Register or Login
All
  • All
  • Uniprot Id
  • Catalog #
  • Peptide Sequence
COVID19
>   home   >   Products   >   Primary Antibodies   >   Antibody Collections   >   Goat Antibodies   >   Goat Anti-HSPA8 (Isoform 1) Antibody   

Goat Anti-HSPA8 (Isoform 1) Antibody

Peptide-affinity purified goat antibody

     
  • WB - Goat Anti-HSPA8 (Isoform 1) Antibody AF1544a
    AF1544a (2 µg/ml) staining of A431 cell lysate (35 µg protein in RIPA buffer). Primary incubation was 1 hour. Detected by chemiluminescence.
    detail
  • SPECIFICATION
  • CITATIONS
  • PROTOCOLS
  • BACKGROUND
  • detail
Product Information
Application
  • Applications Legend:
  • WB=Western Blot
  • IHC=Immunohistochemistry
  • IHC-P=Immunohistochemistry (Paraffin-embedded Sections)
  • IHC-F=Immunohistochemistry (Frozen Sections)
  • IF=Immunofluorescence
  • FC=Flow Cytopmetry
  • IC=Immunochemistry
  • ICC=Immunocytochemistry
  • E=ELISA
  • IP=Immunoprecipitation
  • DB=Dot Blot
  • CHIP=Chromatin Immunoprecipitation
  • FA=Fluorescence Assay
  • IEM=Immunoelectronmicroscopy
  • EIA=Enzyme Immunoassay
WB, E
Primary Accession P11142
Other Accession NP_006588, 3312, 15481 (mouse), 24468 (rat)
Reactivity Human
Predicted Mouse, Rat, Dog
Host Goat
Clonality Polyclonal
Concentration 100ug/200ul
Isotype IgG
Calculated MW 70898 Da
Additional Information
Gene ID 3312
Other Names Heat shock cognate 71 kDa protein, Heat shock 70 kDa protein 8, Lipopolysaccharide-associated protein 1, LAP-1, LPS-associated protein 1, HSPA8, HSC70, HSP73, HSPA10
Format 0.5 mg IgG/ml in Tris saline (20mM Tris pH7.3, 150mM NaCl), 0.02% sodium azide, with 0.5% bovine serum albumin
StorageMaintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.
PrecautionsGoat Anti-HSPA8 (Isoform 1) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.
Protein Information
Name HSPA8 (HGNC:5241)
Function Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:2799391, PubMed:21150129, PubMed:21148293, PubMed:24732912, PubMed:27916661, PubMed:23018488, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:21150129, PubMed:21148293, PubMed:24732912, PubMed:27916661, PubMed:23018488, PubMed:12526792). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:21150129, PubMed:21148293, PubMed:24732912, PubMed:27916661, PubMed:23018488, PubMed:12526792). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J- domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24318877, PubMed:27474739, PubMed:24121476, PubMed:26865365). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad- mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre- mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:2799391, PubMed:11559757, PubMed:36586411). KFERQ motif- containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:2799391, PubMed:11559757, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co- chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity).
Cellular Location Cytoplasm. Melanosome. Nucleus, nucleolus. Cell membrane. Lysosome membrane; Peripheral membrane protein; Cytoplasmic side. Note=Localized in cytoplasmic mRNP granules containing untranslated mRNAs (PubMed:17289661). Translocates rapidly from the cytoplasm to the nuclei, and especially to the nucleoli, upon heat shock (PubMed:1586970)
Tissue Location Ubiquitous..
Research Areas
Citations (0)
citation

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.

Submit your citation using an Abcepta antibody to
info@abcepta.com, and receive a free "I Love Antibodies" mug.

Background

The product encoded by this gene belongs to the heat shock protein 70 family which contains both heat-inducible and constitutively expressed members. The latter are called heat-shock cognate proteins. This gene encodes a heat-shock cognate protein. This protein binds to nascent polypeptides to facilitate correct folding. It also functions as an ATPase in the disassembly of clathrin-coated vesicles during transport of membrane components through the cell. Two alternatively spliced variants have been characterized to date.

References

Variation at the NFATC2 Locus Increases the Risk of Thiazolinedinedione-Induced Edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) Study. Bailey SD, et al. Diabetes Care, 2010 Jul 13. PMID 20628086.
Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. Martins-de-Souza D, et al. J Psychiatr Res, 2010 May 14. PMID 20471030.
Nucleolar targeting of the chaperone hsc70 is regulated by stress, cell signaling, and a composite targeting signal which is controlled by autoinhibition. Ba?ski P, et al. J Biol Chem, 2010 Jul 9. PMID 20457599.
Genetic variations in HSPA8 gene associated with coronary heart disease risk in a Chinese population. He M, et al. PLoS One, 2010 Mar 16. PMID 20300519.
Heat shock cognate protein 70 is essential for Akt signaling in endothelial function. Shiota M, et al. Arterioscler Thromb Vasc Biol, 2010 Mar. PMID 20018937.

FeedBack
Abcepta welcomes feedback from its customers.

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.

If you have any additional inquiries please email technical services at tech@abcepta.com.

$ 341.00
Cat# AF1544a
Size:
Quantity:
Availability: 7-10 days
Bulk Size

Ordering Information

United States
AlbaniaAustraliaAustriaBelgiumBosnia & HerzegovinaBrazilBulgariaCanadaCentral AmericaChinaCroatiaCyprusCzech RepublicDenmarkEstoniaFinlandFranceGermanyGreeceHong KongHungaryIcelandIndiaIndonesiaIrelandIsraelItalyJapanLatviaLithuaniaLuxembourgMacedoniaMalaysiaMaltaNetherlandsNew ZealandNorwayPakistanPolandPortugalRomaniaSerbiaSingaporeSlovakiaSloveniaSouth AfricaSouth KoreaSpainSwedenSwitzerlandTaiwanTurkeyUnited KingdomUnited StatesVietnamWorldwideOthers
Abcepta, Inc.
(888) 735-7227 / (858) 622-0099
(858) 622-0609
USA Headquarters
(888) 735-7227 / (858) 622-0099 or (858) 875-1900

Shipping Information

Domestic orders (in stock items)
Shipped out the same day. Orders placed after 1 PM (PST) will ship out the next business day.
International orders
Contact your local distributors
Terms & Conditions
"