Register or Login
All
  • All
  • Uniprot Id
  • Catalog #
  • Peptide Sequence
COVID19
>   home   >   Products   >   Primary Antibodies   >   Antibody Collections   >   Mitochondrion   >   ATP5B / ATP Synthase Beta Antibody   

ATP5B / ATP Synthase Beta Antibody

Rabbit Polyclonal Antibody

     
  • IHC-P - ATP5B / ATP Synthase Beta Antibody ALS17247
    Human Heart: Formalin-Fixed, Paraffin-Embedded (FFPE)
    detail
  • WB - ATP5B / ATP Synthase Beta Antibody ALS17247
    Western blot analysis of extracts of various cell lines, using ATP5B antibody.
    detail
  • SPECIFICATION
  • CITATIONS
  • PROTOCOLS
  • BACKGROUND
  • detail
Product Information
Application
  • Applications Legend:
  • WB=Western Blot
  • IHC=Immunohistochemistry
  • IHC-P=Immunohistochemistry (Paraffin-embedded Sections)
  • IHC-F=Immunohistochemistry (Frozen Sections)
  • IF=Immunofluorescence
  • FC=Flow Cytopmetry
  • IC=Immunochemistry
  • ICC=Immunocytochemistry
  • E=ELISA
  • IP=Immunoprecipitation
  • DB=Dot Blot
  • CHIP=Chromatin Immunoprecipitation
  • FA=Fluorescence Assay
  • IEM=Immunoelectronmicroscopy
  • EIA=Enzyme Immunoassay
WB, IHC-P
Primary Accession P06576
Other Accession 506
Reactivity Human, Mouse, Rat
Host Rabbit
Clonality Polyclonal
Isotype IgG
Calculated MW 56560 Da
Dilution IHC-P (5 µg/ml), WB (1:500 - 1:2000),
Additional Information
Gene ID 506
Other Names ATP5B, ATPMB, ATPSB, Beta-mtATPase, F0F1-ATP synthase beta subunit, ATP synthase beta subunit
Target/Specificity Human ATP5B / ATP Synthase Beta.
Reconstitution & Storage PBS, pH 7.3, 0.02% sodium azide, 50% glycerol. Long term: -80°C; Short term: -20°C. Avoid freeze-thaw cycles.
PrecautionsATP5B / ATP Synthase Beta Antibody is for research use only and not for use in diagnostic or therapeutic procedures.
Protein Information
Name ATP5F1B (HGNC:830)
Function Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits.
Cellular Location Mitochondrion inner membrane; Peripheral membrane protein {ECO:0000250|UniProtKB:P00829}; Matrix side {ECO:0000250|UniProtKB:P00829, ECO:0000269|PubMed:25168243}
Volume 50 µl
Research Areas
Citations (0)
citation

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.

Submit your citation using an Abcepta antibody to
info@abcepta.com, and receive a free "I Love Antibodies" mug.

Background

Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits.

References

Neckelmann N.,et al.Genomics 5:829-843(1989).
Ohta S.,et al.J. Biol. Chem. 263:11257-11262(1988).
Ohta S.,et al.J. Biochem. 99:135-141(1986).
Ota T.,et al.Nat. Genet. 36:40-45(2004).
Mural R.J.,et al.Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.

FeedBack
Abcepta welcomes feedback from its customers.

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.

If you have any additional inquiries please email technical services at tech@abcepta.com.

Discontinued
Cat# ALS17247
Size:
Alternative Products:

Ordering Information

United States
AlbaniaAustraliaAustriaBelgiumBosnia & HerzegovinaBrazilBulgariaCanadaCentral AmericaChinaCroatiaCyprusCzech RepublicDenmarkEstoniaFinlandFranceGermanyGreeceHong KongHungaryIcelandIndiaIndonesiaIrelandIsraelItalyJapanLatviaLithuaniaLuxembourgMacedoniaMalaysiaMaltaNetherlandsNew ZealandNorwayPakistanPolandPortugalRomaniaSerbiaSingaporeSlovakiaSloveniaSouth AfricaSouth KoreaSpainSwedenSwitzerlandTaiwanTurkeyUnited KingdomUnited StatesVietnamWorldwideOthers
Abcepta, Inc.
(888) 735-7227 / (858) 622-0099
(858) 622-0609
USA Headquarters
(888) 735-7227 / (858) 622-0099 or (858) 875-1900

Shipping Information

Domestic orders (in stock items)
Shipped out the same day. Orders placed after 1 PM (PST) will ship out the next business day.
International orders
Contact your local distributors
Terms & Conditions
"