Register or Login
All
  • All
  • Uniprot Id
  • Catalog #
  • Peptide Sequence
COVID19
>   home   >   Products   >   Peptides   >   Blocking Peptides   >   FXN Blocking Peptide (N-term)   

FXN Blocking Peptide (N-term)

Synthetic peptide

     
  • SPECIFICATION
  • CITATIONS
  • PROTOCOLS
  • BACKGROUND
Product Information
Primary Accession Q16595
Other Accession NP_000135.2
Additional Information
Gene ID 2395
Other Names Frataxin, mitochondrial, Friedreich ataxia protein, Fxn, Frataxin intermediate form, i-FXN, Frataxin(56-210), m56-FXN, Frataxin(78-210), d-FXN, m78-FXN, Frataxin mature form, Frataxin(81-210), m81-FXN, FXN, FRDA, X25
Target/Specificity The synthetic peptide sequence is selected from aa 51-64 of HUMAN FXN
Format Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.
StorageMaintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.
PrecautionsThis product is for research use only. Not for use in diagnostic or therapeutic procedures.
Protein Information
Name FXN (HGNC:3951)
Synonyms FRDA, X25
Function [Frataxin mature form]: Functions as an activator of persulfide transfer to the scaffoding protein ISCU as component of the core iron-sulfur cluster (ISC) assembly complex and participates to the [2Fe-2S] cluster assembly (PubMed:24971490, PubMed:12785837). Accelerates sulfur transfer from NFS1 persulfide intermediate to ISCU and to small thiols such as L-cysteine and glutathione leading to persulfuration of these thiols and ultimately sulfide release (PubMed:24971490). Binds ferrous ion and is released from FXN upon the addition of both L-cysteine and reduced FDX2 during [2Fe-2S] cluster assembly (PubMed:29576242). The core iron-sulfur cluster (ISC) assembly complex is involved in the de novo synthesis of a [2Fe-2S] cluster, the first step of the mitochondrial iron-sulfur protein biogenesis. This process is initiated by the cysteine desulfurase complex (NFS1:LYRM4:NDUFAB1) that produces persulfide which is delivered on the scaffold protein ISCU in a FXN-dependent manner. Then this complex is stabilized by FDX2 which provides reducing equivalents to accomplish the [2Fe-2S] cluster assembly. Finally, the [2Fe-2S] cluster is transferred from ISCU to chaperone proteins, including HSCB, HSPA9 and GLRX5 (By similarity). May play a role in the protection against iron- catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity (PubMed:15641778). May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has only been shown using heterologous overexpression systems (PubMed:11823441, PubMed:12755598). May function as an iron chaperone protein that protects the aconitase [4Fe-4S]2+ cluster from disassembly and promotes enzyme reactivation (PubMed:15247478). May play a role as a high affinity iron binding partner for FECH that is capable of both delivering iron to ferrochelatase and mediating the terminal step in mitochondrial heme biosynthesis (PubMed:15123683, PubMed:16239244).
Cellular Location [Frataxin mature form]: Mitochondrion
Tissue Location Expressed in the heart, peripheral blood lymphocytes and dermal fibroblasts.
Research Areas
Citations (0)
citation

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.

Submit your citation using an Abcepta antibody to
info@abcepta.com, and receive a free "I Love Antibodies" mug.

Background

This nuclear gene encodes a mitochondrial protein which belongs to FRATAXIN family. The protein functions in regulating mitochondrial iron transport and respiration. The expansion of intronic trinucleotide repeat GAA results in Friedreich ataxia. Alternative splicing results in multiple transcript variants.

References

Tsai, C.L., et al. Biochemistry 49(43):9132-9139(2010)
Thierbach, R., et al. Biochem. J. 432(1):165-172(2010)
Bailey, S.D., et al. Diabetes Care 33(10):2250-2253(2010)
Marino, T.C., et al. Clin. Genet. 77(6):598-600(2010)
Li, K., et al. PLoS ONE 5 (8), E12286 (2010) :

FeedBack
Abcepta welcomes feedback from its customers.

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.

If you have any additional inquiries please email technical services at tech@abcepta.com.

$ 277.78
Cat# BP19965A
Size:
Quantity:
Availability: 2 weeks
Bulk Size

Ordering Information

United States
AlbaniaAustraliaAustriaBelgiumBosnia & HerzegovinaBrazilBulgariaCanadaCentral AmericaChinaCroatiaCyprusCzech RepublicDenmarkEstoniaFinlandFranceGermanyGreeceHong KongHungaryIcelandIndiaIndonesiaIrelandIsraelItalyJapanLatviaLithuaniaLuxembourgMacedoniaMalaysiaMaltaNetherlandsNew ZealandNorwayPakistanPolandPortugalRomaniaSerbiaSingaporeSlovakiaSloveniaSouth AfricaSouth KoreaSpainSwedenSwitzerlandTaiwanTurkeyUnited KingdomUnited StatesVietnamWorldwideOthers
Abcepta, Inc.
(888) 735-7227 / (858) 622-0099
(858) 622-0609
USA Headquarters
(888) 735-7227 / (858) 622-0099 or (858) 875-1900

Shipping Information

Domestic orders (in stock items)
Shipped out the same day. Orders placed after 1 PM (PST) will ship out the next business day.
International orders
Contact your local distributors
Terms & Conditions
"