Register or Login
All
  • All
  • Uniprot Id
  • Catalog #
  • Peptide Sequence
COVID19
>   home   >   Products   >   Peptides   >   Blocking Peptides   >   Phospho-SMAD2(T220) Antibody Blocking peptide   

Phospho-SMAD2(T220) Antibody Blocking peptide

Synthetic peptide

     
  • SPECIFICATION
  • CITATIONS
  • PROTOCOLS
  • BACKGROUND
Product Information
Primary Accession Q15796
Clone Names 80522025
Additional Information
Gene ID 4087
Other Names Mothers against decapentaplegic homolog 2, MAD homolog 2, Mothers against DPP homolog 2, JV18-1, Mad-related protein 2, hMAD-2, SMAD family member 2, SMAD 2, Smad2, hSMAD2, SMAD2, MADH2, MADR2
Target/Specificity The synthetic peptide sequence used to generate the antibody AP3675a was selected from the region of human Phospho-SMAD2-T220. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.
Format Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.
StorageMaintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.
PrecautionsThis product is for research use only. Not for use in diagnostic or therapeutic procedures.
Protein Information
Name SMAD2
Synonyms MADH2, MADR2
Function Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. Promotes TGFB1-mediated transcription of odontoblastic differentiation genes in dental papilla cells (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. May act as a tumor suppressor in colorectal carcinoma (PubMed:8752209).
Cellular Location Cytoplasm. Nucleus. Note=Cytoplasmic and nuclear in the absence of TGF-beta. On TGF-beta stimulation, migrates to the nucleus when complexed with SMAD4 or with IPO7 (PubMed:9865696, PubMed:21145499). On dephosphorylation by phosphatase PPM1A, released from the SMAD2/SMAD4 complex, and exported out of the nucleus by interaction with RANBP1 (PubMed:16751101, PubMed:19289081). Localized mainly to the nucleus in the early stages of embryo development with expression becoming evident in the cytoplasm at the blastocyst and epiblast stages (By similarity). {ECO:0000250|UniProtKB:Q62432, ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:21145499, ECO:0000269|PubMed:9865696}
Tissue Location Expressed at high levels in skeletal muscle, endothelial cells, heart and placenta.
Research Areas
Citations (0)
citation

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.

Submit your citation using an Abcepta antibody to
info@abcepta.com, and receive a free "I Love Antibodies" mug.

Background

SMAD2 is a 58 kDa member of a family of proteins involved in cell proliferation, differentiation and development. The Smad family is divided into three subclasses: receptor-regulated Smad's, activin/TGF??receptor-regulated (Smad2 and 3) or BMP receptor regulated (Smad1, 5, and 8); the common partner, (Smad4) that functions via its interaction to the various Smad's; and the inhibitory Smad's, (Smad6 and Smad7). Smad2 consists of two highly conserved domains, the N terminal Mad homology (MH1) and the C-terminal Mad homology 2 (MH2) domains. The MH1 domain binds DNA and regulates nuclear import and transcription while the MH2 domain conserved among all the Smad's regulates Smad2 oligomerization and binding to cytoplasmic adaptors and transcription factors. Activated Smad2 associates with Smad4 and translocates as a complex into the nucleus, allowing its binding to DNA and transcription factors. This translocation of Smad2 (as well as Smad3) into the nucleus is a central event in TGF beta signaling. Phosphorylation of threonine 8 in the calmodulin binding region of the MH1 domain by extracellular signal regulated kinase 1(ERK 1) enhances Smad2 transcriptional activity, which is negatively regulated by calmodulin. The regulation of Smad2 phosphorylation on threonine 8 by ERK 1 and calmodulin is critical for Smad2 mediated signaling.

References

Papageorgis,P., et.al., Cancer Res. 70 (3), 968-978 (2010)Funaba,M., et.al., J. Biol. Chem. 277 (44), 41361-41368 (2002)

FeedBack
Abcepta welcomes feedback from its customers.

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.

If you have any additional inquiries please email technical services at tech@abcepta.com.

$ 277.78
Cat# BP3675a
Size:
Quantity:
Availability: 2 weeks
Bulk Size

Ordering Information

United States
AlbaniaAustraliaAustriaBelgiumBosnia & HerzegovinaBrazilBulgariaCanadaCentral AmericaChinaCroatiaCyprusCzech RepublicDenmarkEstoniaFinlandFranceGermanyGreeceHong KongHungaryIcelandIndiaIndonesiaIrelandIsraelItalyJapanLatviaLithuaniaLuxembourgMacedoniaMalaysiaMaltaNetherlandsNew ZealandNorwayPakistanPolandPortugalRomaniaSerbiaSingaporeSlovakiaSloveniaSouth AfricaSouth KoreaSpainSwedenSwitzerlandTaiwanTurkeyUnited KingdomUnited StatesVietnamWorldwideOthers
Abcepta, Inc.
(888) 735-7227 / (858) 622-0099
(858) 622-0609
USA Headquarters
(888) 735-7227 / (858) 622-0099 or (858) 875-1900

Shipping Information

Domestic orders (in stock items)
Shipped out the same day. Orders placed after 1 PM (PST) will ship out the next business day.
International orders
Contact your local distributors
Terms & Conditions
"