PKA Antibody Rabbit Polyclonal Antibody Catalog # ABV10091 # **Specification** ### **PKA Antibody - Product Information** Application Primary Accession Reactivity Host Clonality Isotype Calculated MW WB P05132 Human, Mouse, Rat, Bovine Rabbit Polyclonal Rabbit IgG 40571 # **PKA Antibody - Additional Information** **Gene ID 18747** Application & Usage Western blot analysis (0.5-4 μ g/ml) and in immunoprecipitation (20-30 μ g/ml). However, the optimal conditions should be determined individually. **Other Names** PRKACA, MGC102831, PKACA, MGC48865 Target/Specificity **PKA** **Antibody Form** Liquid **Appearance** Colorless liquid ### **Formulation** 100 μg (0.5 mg/ml) affinity purified rabbit anti-PKA polyclonal antibody in phosphate buffered saline (PBS), pH 7.2, containing 30% glycerol, 0.5% BSA, 0.01% thimerosal. #### Handling The antibody solution should be gently mixed before use. **Reconstitution & Storage** -20 °C **Background Descriptions** ### **Precautions** PKA Antibody is for research use only and not for use in diagnostic or therapeutic procedures. ### **PKA Antibody - Protein Information** Name Prkaca Synonyms Pkaca #### **Function** Phosphorylates a large number of substrates in the cytoplasm and the nucleus (By similarity). Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PIA2, RYR2, RORA, SOX9 and VASP (PubMed:10805756, PubMed: 19223768). Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PIA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis (By similarity). RORA is activated by phosphorylation. Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts (By similarity). Involved in chondrogenesis by mediating phosphorylation of SOX9 (PubMed:10805756). Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B-alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP. RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). PSMC5/RPT6 activation by phosphorylation stimulates proteasome. Negatively regulates tight junctions (TJs) in ovarian cancer cells via CLDN3 phosphorylation. NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding. Required for phosphorylation of GLI transcription factors which inhibits them and prevents transcriptional activation of Hedgehog signaling pathway target genes (PubMed:33886552). GLI transcription factor phosphorylation is inhibited by interaction of PRKACA with SMO which sequesters PRKACA at the cell membrane (PubMed: 33886552). Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis most probably through the regulation of OFD1 in ciliogenesis (By similarity). Prevents meiosis resumption in prophase- arrested oocytes via CDC25B inactivation by phosphorylation (PubMed:19223768). May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT) (By similarity). Phosphorylates APOBEC3G and AICDA. Phosphorylates HSF1; this phosphorylation promotes HSF1 nuclear localization and transcriptional activity upon heat shock (By similarity). Acts as a negative regulator of mTORC1 by mediating phosphorylation of RPTOR (By similarity). ### **Cellular Location** Cytoplasm. Cell membrane. Nucleus {ECO:0000250|UniProtKB:P17612}. Mitochondrion. Membrane {ECO:0000250|UniProtKB:P17612}; Lipid-anchor {ECO:0000250|UniProtKB:P17612}. Note=Translocates into the nucleus (monomeric catalytic subunit) (By similarity). The inactive holoenzyme is found in the cytoplasm. Distributed throughout the cytoplasm in meiotically incompetent oocytes. Associated to mitochondrion as meiotic competence is acquired. Aggregates around the germinal vesicles (GV) at the immature GV stage oocytes. Colocalizes with HSF1 in nuclear stress bodies (nSBs) upon heat shock (By similarity). Recruited to the cell membrane through interaction with SMO (PubMed:33886552). {ECO:0000250|UniProtKB:P17612, ECO:0000269|PubMed:33886552} **Tissue Location** [Isoform 2]: Sperm-specific. # **PKA Antibody - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - <u>Immunoprecipitation</u> - Flow Cytomety - Cell Culture # **PKA Antibody - Images** Western blot analysis of PKA expression in lysates from Jurkat cells (Lane 1 & 2), mouse small intestine (Lane 3) and rat kidney (Lane 4) # **PKA Antibody - Background** Protein kinase A (PKA) also known as cAMP-dependent protein kinase, is a 40 kDa protein kinase that phosphorylates serine or threonine residues in target proteins in response to elevated levels of cAMP. It has been s μ ggested that the complex structure of PKA may be necessary for it to accomplish such diverse functions.