Western blot: Recombinant protein

Western blot: 1:200

BRD4 Antibody

Rabbit Polyclonal Antibody Catalog # ABV11200

Specification

BRD4 Antibody - Product Information

Application WB
Primary Accession O60885
Reactivity Human
Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Calculated MW 152219

BRD4 Antibody - Additional Information

Gene ID 23476

Positive Control
Application & Usage
Other Names
BRD4, Protein HUNK1, HUNK1

Target/Specificity

BRD4

Antibody Form

Liquid

Appearance

Colorless liquid

Formulation

 $100~\mu g$ or $30~\mu g$ (0.5 mg/ml) of antibody in PBS pH 7.2 containing 0.01 % BSA, 0.01 % thimerosal, and 50~% glycerol.

Handling

The antibody solution should be gently mixed before use.

Reconstitution & Storage

-20 °C

Background Descriptions

Precautions

BRD4 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

BRD4 Antibody - Protein Information

Name BRD4

Synonyms HUNK1

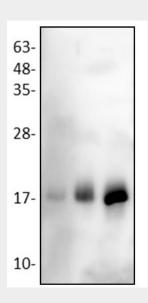
Function

Chromatin reader protein that recognizes and binds acetylated histones and plays a key role in transmission of epigenetic memory across cell divisions and transcription regulation (PubMed: 23086925, PubMed:23317504, PubMed:20871596, PubMed:29176719). Remains associated with acetylated chromatin throughout the entire cell cycle and provides epigenetic memory for postmitotic G1 gene transcription by preserving acetylated chromatin status and maintaining high-order chromatin structure (PubMed:23589332, PubMed:23317504, PubMed:22334664). During interphase, plays a key role in regulating the transcription of signal- inducible genes by associating with the P-TEFb complex and recruiting it to promoters (PubMed: 23589332, PubMed:19596240, PubMed:16109377, PubMed:16109376, PubMed:24360279). Also recruits P-TEFb complex to distal enhancers, so called anti-pause enhancers in collaboration with JMJD6 (PubMed:23589332, PubMed: 19596240, PubMed:16109377, PubMed:16109376, PubMed:24360279). BRD4 and JMJD6 are required to form the transcriptionally active P-TEFb complex by displacing negative regulators such as HEXIM1 and 7SKsnRNA complex from P-TEFb, thereby transforming it into an active form that can then phosphorylate the C- terminal domain (CTD) of RNA polymerase II (PubMed:23589332, PubMed: 19596240, PubMed: 16109377, PubMed: 16109376, PubMed:24360279). Regulates differentiation of naive CD4(+) T-cells into T-helper Th17 by promoting recruitment of P-TEFb to promoters (By similarity). Promotes phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II (PubMed: 23086925). According to a report, directly acts as an atypical protein kinase and mediates phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II; these data however need additional evidences in vivo (PubMed: 22509028). In addition to acetylated histones, also recognizes and binds acetylated RELA, leading to further recruitment of the P-TEFb complex and subsequent activation of NF-kappa-B (PubMed:19103749). Also acts as a regulator of p53/TP53- mediated transcription: following phosphorylation by CK2, recruited to p53/TP53 specific target promoters (PubMed:23317504).

Cellular Location

Nucleus. Chromosome. Note=Associates with acetylated chromatin (PubMed:21890894, PubMed:16109376). Released from chromatin upon deacetylation of histones that can be triggered by different signals such as activation of the JNK pathway or nocodazole treatment

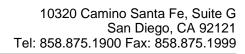
(PubMed:21890894, PubMed:16109376). Preferentially localizes to mitotic chromosomes, while it does not localize to meiotic chromosomes (PubMed:21890894, PubMed:16109376).


Tissue Location Ubiquitously expressed.

BRD4 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture


BRD4 Antibody - Images

Western blot of Rat kidney lysate with BRD4 antibody

BRD4 Antibody - Background

The acetylation of histone lysine residues plays a crucial role in the epigenetic regulation of gene transcription. A bromodomain is a protein domain that recognizes acetylated lysine residues such as those on the N-terminal tails of histones. This recognition is often a prerequisite for protein-histone association and chromatin remodeling. These domains function in the linking of protein complexes to acetylated nucleosomes, thereby controlling chromatin structure and gene expression. Thus, bromodomains serve as "readers" of histone acetylation marks regulating the transcription of target promoters. The BET family of proteins, defined by tandem Bromodomains and an Extra Terminal domain, include BRD2, BRD3, BRD4, and BRDT. The BET proteins play a key role in many cellular processes, including inflammatory gene expression, mitosis, and viral/host interactions. The isolated individual or tandem bromodomains of BRD2 and BRD4 have been shown to bind acetylated histone tails, serving to couple histone acetylation marks to the transcriptional regulation of target promoters. Small molecule inhibitors of these interactions hold promise as

useful therapeutics for human disease.