

N6-Methyladenosine Antibody

Purified Rabbit Polyclonal Antibody Catalog # ABV11630

Specification

N6-Methyladenosine Antibody - Product Information

Application WB

Reactivity
Host
Clonality
Polyclonal
Isotype
Rabbit IgG

N6-Methyladenosine Antibody - Additional Information

Other Names

m6A

Target/Specificity

N6-Methyl Adenosine

Formulation

100 μg (1 mg/ml) in PBS (prepared using DEPC-treated water) with 0.09% (W/V) sodium azide.

Handling

The antibody solution should be gently mixed before use.

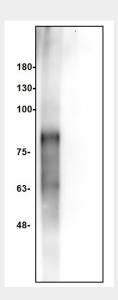
Background Descriptions

Precautions

N6-Methyladenosine Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

N6-Methyladenosine Antibody - Protein Information

N6-Methyladenosine Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety

• Cell Culture

N6-Methyladenosine Antibody - Images

Western blot analysis by Anti-N6-MA. Lane1: N6-Methyladenosine conjugated with BSA (2ng); Lane2: Adenosine conjugated with BSA (2ng).

N6-Methyladenosine Antibody - Background

N6-methyladenosine (m6A), or methylation of the N6 position of adenosine is a posttranscriptional modification of RNA. Due to a lack of analytical methods, N6-methyladenosine is poorly understood, but new evidence suggests that it is a very common base modification and important physiological regulator. N6-methyladenosine is markedly increased throughout brain development, and is enriched near stop codons, microRNA-binding sites and UTRs, which indicates a fundamental role in the regulation of gene expression. N6-methyladenosine is also highly conserved between human and mouse. The regulation of m6A modifications in mRNA has been linked to disease, where fat mass and obesity-associated (FTO) has been has been reported to be a obesity risk gene. FTO is a m6A demethylase and polymorphisms that result in increased FTO expression are associated with increased body mass and risk of obesity.