

Anti-C-Peptide Antibody (3E8D9)

Mouse Monoclonal Antibody Catalog # ABV12089

Specification

Anti-C-Peptide Antibody (3E8D9) - Product Information

Application Primary Accession P01308 Reactivity Human Host Mouse Clonality **Monoclonal** Isotype Mouse IgG1, ĸ

Anti-C-Peptide Antibody (3E8D9) - Additional Information

Gene ID 3630

Positive Control Target/Specificity

C-peptide

Antibody Form

Liquid

Appearance Colorless liquid

Reconstitution & Storage

-20 °C

Background Descriptions

Precautions

Anti-C-Peptide Antibody (3E8D9) is for research use only and not for use in diagnostic or therapeutic procedures.

ELISA

Anti-C-Peptide Antibody (3E8D9) - Protein Information

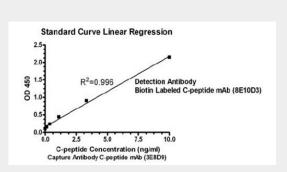
Name INS

Function

Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.

Cellular Location

Secreted.



Anti-C-Peptide Antibody (3E8D9) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Anti-C-Peptide Antibody (3E8D9) - Images

Antibody pairs analysis of C-peptide monoclonal antibodies by Sandwich ELISA

Anti-C-Peptide Antibody (3E8D9) - Background

C-peptide serves as an important linker between A-chain and B-chain of insulin and facilitates the efficient assembly, folding, and processing of insulin in the endoplasmic reticulum. Equimolar amounts of C-peptide and insulin are stored in secretory granules of the pancreatic beta cells and both are eventually released to the portal circulation. The sole interest in C-peptide was as a marker of insulin secretion. Newly diagnosed diabetes patients often get their C-peptide levels measured as a means of distinguishing type 1 and type 2 diabetes. C-peptide is also used for determining the possibility of gastrinomas associated with Multiple Endocrine Neoplasm syndromes (MEN 1).

C-Peptide Antibody is produced from the hybridoma resulting from fusion of SP2/0-Ag14 myeloma and B-lymphocytes obtained from mouse immunized with human C-peptide conjugated to KLH.