

CD71 / Transferrin Receptor Antibody (aa15-64)

Rabbit Polyclonal Antibody Catalog # ALS16056

Specification

CD71 / Transferrin Receptor Antibody (aa15-64) - Product Information

Application WB
Primary Accession P02786

Reactivity Human, Mouse

Host Rabbit
Clonality Polyclonal
Calculated MW 85kDa KDa

CD71 / Transferrin Receptor Antibody (aa15-64) - Additional Information

Gene ID 7037

Other Names

Transferrin receptor protein 1, TR, TfR, TfR1, Trfr, T9, p90, CD71, Transferrin receptor protein 1, serum form, sTfR, TFRC

Target/Specificity

CD71/TfR (Ab-24) Antibody detects endogenous levels of total CD71/TfR protein.

Reconstitution & Storage

Store at -20°C for up to one year.

Precautions

CD71 / Transferrin Receptor Antibody (aa15-64) is for research use only and not for use in diagnostic or therapeutic procedures.

CD71 / Transferrin Receptor Antibody (aa15-64) - Protein Information

Name TFRC

Function

Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes (PubMed:26214738). Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with transferrin for an overlapping C-terminal binding site. Positively regulates T and B cell proliferation through iron uptake (PubMed:26642240). Acts as a lipid sensor that regulates mitochondrial fusion by regulating activation of the JNK pathway (PubMed:26214738). When dietary

levels of stearate (C18:0) are low, promotes activation of the JNK pathway, resulting in HUWE1-mediated ubiquitination and subsequent degradation of the mitofusin MFN2 and inhibition of mitochondrial fusion (PubMed:26214738). When dietary levels of stearate (C18:0) are high, TFRC stearoylation inhibits activation of the JNK pathway and thus degradation of the mitofusin MFN2 (PubMed:26214738).

Cellular Location

Cell membrane; Single-pass type II membrane protein Melanosome. Note=Identified by mass spectrometry in melanosome fractions from stage I to stage IV

Volume 50 μl

CD71 / Transferrin Receptor Antibody (aa15-64) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

CD71 / Transferrin Receptor Antibody (aa15-64) - Images

Western blot of extracts from 293 cells, treated with PMA 125 ng/ml 30', using CD71/TfR (Ab-24)...

CD71 / Transferrin Receptor Antibody (aa15-64) - Background

Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with transferrin for an overlapping C-terminal binding site.

CD71 / Transferrin Receptor Antibody (aa15-64) - References

Schneider C.,et al.Nature 311:675-678(1984).

McClelland A.,et al.Cell 39:267-274(1984).

Evans P.,et al.Gene 199:123-131(1997).

Wheeler D.L.,et al.Thesis (1999), University of Iowa, United States.

Totoki Y.,et al.Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases.