

SUMO2 Antibody (aa44-93)

Rabbit Polyclonal Antibody Catalog # ALS16555

Specification

SUMO2 Antibody (aa44-93) - Product Information

Application IHC, WB
Primary Accession P61956
Other Accession 6613

Reactivity Human, Mouse, Rat

Host Rabbit Clonality Polyclonal Isotype IgG

Calculated MW 10871

SUMO2 Antibody (aa44-93) - Additional Information

Gene ID 6613

Other Names

SUMO2, HSMT3, SMT3 homolog 2, SMT3A, Sentrin 2, Smt3B, SMT3H2, SUMO-2, SUMO-3, Sentrin-2, Ubiquitin-like protein SMT3A, Ubiquitin-like protein SMT3B

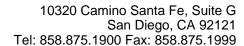
Target/Specificity

SUMO2/3 (Cleaved-Gly93) Antibody detects endogenous levels of fragment of activated SUMO2/3 resulting from cleavage adjacent to Gly93.

Reconstitution & Storage

PBS (without Mg2+, Ca2+), pH 7.4, 150 mM sodium chloride, 0.02% sodium azide, 50% glycerol. Store at -20°C for up to one year.

Precautions


SUMO2 Antibody (aa44-93) is for research use only and not for use in diagnostic or therapeutic procedures.

SUMO2 Antibody (aa44-93) - Protein Information

Name SUMO2 (HGNC:11125)

Function

Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2, CBX4 or ZNF451 (PubMed:26524494). This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Polymeric SUMO2 chains are also susceptible to polyubiquitination which functions

as a signal for proteasomal degradation of modified proteins (PubMed:18408734, PubMed:18538659, PubMed:21965678, PubMed:9556629). Plays a role in the regulation of sumoylation status of SETX (PubMed:24105744).

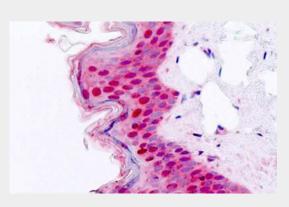
Cellular Location

Nucleus. Nucleus, PML body.

Tissue Location

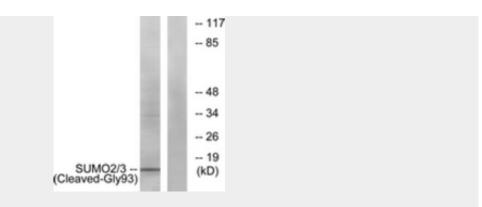
Broadly expressed..

Volume


50 µl

SUMO2 Antibody (aa44-93) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

SUMO2 Antibody (aa44-93) - Images

Anti-SUMO2 antibody IHC staining of human skin.

Western blot of extracts from HeLa cells, using SUMO2/3 (Cleaved-Gly93) Antibody.

SUMO2 Antibody (aa44-93) - Background

Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Polymeric SUMO2 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins.

SUMO2 Antibody (aa44-93) - References

Mannen H., et al. Biochem. Biophys. Res. Commun. 222:178-180(1996).

Lapenta V., et al. Genomics 40:362-367(1997).

Ota T., et al. Nat. Genet. 36:40-45(2004).

Zody M.C., et al. Nature 440:1045-1049(2006).

Mural R.J., et al. Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.