

Phospho-Ser269 Aquaporin 2 Antibody

Affinity purified rabbit polyclonal antibody Catalog # AN1193

Specification

Phospho-Ser269 Aquaporin 2 Antibody - Product Information

Application WB
Primary Accession P34080
Reactivity Rat

Predicted Bovine, Mouse

Host Rabbit
Clonality polyclonal
Calculated MW 29/37 KDa

Phospho-Ser269 Aquaporin 2 Antibody - Additional Information

Gene ID 25386
Gene Name AQP2

Other Names

Aquaporin-2, AQP-2, ADH water channel, Aquaporin-CD, AQP-CD, Collecting duct water channel protein, WCH-CD, Water channel protein for renal collecting duct, Aqp2

Target/Specificity

Synthetic phospho-peptide corresponding to amino acid residues surrounding Ser269 conjugated to KLH.

Dilution

WB~~ 1:1000

Format

Prepared from rabbit serum by affinity purification via sequential chromatography on phosphoand dephosphopeptide affinity columns.

Antibody Specificity

Specific for the ~29k AQP2 protein phosphorylated at Ser269. Also recognizes the glycosylated form of AQP2 at ~ 37k. Immunolabeling of the AQP2 band is blocked by preadsorption with the phospho-peptide used as antigen but not by the corresponding dephospho-peptide.

Storage

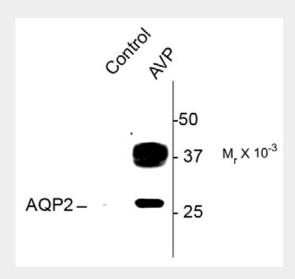
Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Phospho-Ser269 Aquaporin 2 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice



Phospho-Ser269 Aquaporin 2 Antibody - Protocols

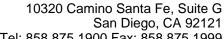
Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Phospho-Ser269 Aquaporin 2 Antibody - Images

Western blot of vasopressin (AVP) treated rat kidney lysate showingspecific immunolabeling of the ~ 29k and 37k glycosylated form of theAQP2 protein phosphorylated at Ser269.

Phospho-Ser269 Aquaporin 2 Antibody - Background


Aquaporin 2 (AQP2) is a hormonally regulated water channel located in the renal collecting duct. Mutations in the AQP2 gene cause hereditary nephrogenic diabetes insipidus in humans (Iolascon et al., 2007). A vasopressin induced cAMP increase results in the phosphorylation of AQP2 at serine-256 and its translocation from the intracellular vesicles to the apical membrane of principal cells (van Balkom et al., 2002). Serine-269 has been recently identified as a vasopressin-mediated phosphorylation site on AQP2 and as such has shown to potentiate plasma membrane retention of AQP2 (Hoffert JD et al., 2008).

Phospho-Ser269 Aquaporin 2 Antibody - References

van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, Deen PM (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin 2 water channel. J Biol Chem 277(44):41473-9.

Ford P, Rivarola V, Chara O, Blot-Chabaud M, Cluzeaud F, Farman M, Parisi M, Capurro C (2005) Volume regulation in cortical collecting duct cells: role of AQP2. Biol Cell 97(9):687-97. Hoffert JD, Nielsen J,, Yu MJ,, Pisitikun T,Schleicher SM,, Nielsen Knepper MA (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. . Am J Physiol Renal Physiol 292: F691-F700.

Iolascon A, Aglio V, Tamma G, D'Appolito M, Addabbo F, Procino G, Simonetti MC, Montini G,

Tel: 858.875.1900 Fax: 858.875.1999

Gesulado L, Debler EW, Suelto M, Valenti G (2007) Characterization of two novel missense mutations in AQP2 gene causing nephrogenic diabetes insipidus. Nephron Physiol. 105(3): p33-41. Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA. (2008) Vasopressin-stimulated increase in phosphorylation at serine 269 potentiates plasma membrane retention of aquaporin 2. J Biol Chem. 2008 Sep 5; 283(36):24617-27.