

# SHANK2 Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP12783c

# **Specification**

# SHANK2 Antibody (Center) - Product Information

Application WB,E
Primary Accession Q9UPX8

Other Accession <u>Q80Z38</u>, <u>NP\_036441.2</u>

Reactivity
Host
Clonality
Polyclonal
Isotype
Calculated MW
Antigen Region

Mouse
Rabbit
Polyclonal
Rabbit IgG
201261
879-908

## SHANK2 Antibody (Center) - Additional Information

#### **Gene ID 22941**

#### **Other Names**

SH3 and multiple ankyrin repeat domains protein 2, Shank2, Cortactin-binding protein 1, CortBP1, Proline-rich synapse-associated protein 1, SHANK2, CORTBP1, KIAA1022, PROSAP1

#### Target/Specificity

This SHANK2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 879-908 amino acids from the Central region of human SHANK2.

### **Dilution**

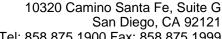
WB~~1:1000

#### **Format**

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

#### Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.


## **Precautions**

SHANK2 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

## SHANK2 Antibody (Center) - Protein Information

#### Name SHANK2

Synonyms CORTBP1, KIAA1022, PROSAP1





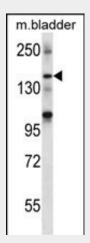


Function Seems to be an adapter protein in the postsynaptic density (PSD) of excitatory synapses that interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors, and the actin-based cytoskeleton. May play a role in the structural and functional organization of the dendritic spine and synaptic junction.

#### **Cellular Location**

Apical cell membrane. Cytoplasm. Synapse. Postsynaptic density. Cell projection, growth cone. Cell projection, dendritic spine. Note=Colocalizes with cortactin in growth cones in differentiating hippocampal neurons Colocalized with PDE4D to the apical membrane of colonic crypt cells (By similarity).

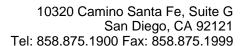
#### **Tissue Location**


Isoform 3 is present in epithelial colonic cells (at protein level).

## SHANK2 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture


## SHANK2 Antibody (Center) - Images



SHANK2 Antibody (Center) (Cat. #AP12783c) western blot analysis in mouse bladder tissue lysates (35ug/lane). This demonstrates the SHANK2 antibody detected the SHANK2 protein (arrow).

## SHANK2 Antibody (Center) - Background

This gene encodes a protein that is a member of the Shank family of synaptic proteins that may function as molecular scaffolds in the postsynaptic density (PSD). Shank proteins contain multiple domains for protein-protein interaction, including ankyrin repeats, an SH3 domain, a PSD-95/Dlg/ZO-1 domain, a sterile alpha





motif domain, and a proline-rich region. This particular family member contains a PDZ domain, a consensus sequence for cortactin SH3 domain-binding peptides and a sterile alpha motif. The alternative splicing demonstrated in Shank genes has been suggested as a mechanism for regulating the molecular structure of Shank and the spectrum of Shank-interacting proteins in the PSDs of adult and developing brain. Two alternative splice variants, encoding distinct isoforms, are reported. Additional splice variants exist but their full-length nature has not been determined. [provided by RefSeq].

# **SHANK2 Antibody (Center) - References**

Pinto, D., et al. Nature 466(7304):368-372(2010) Berkel, S., et al. Nat. Genet. 42(6):489-491(2010) Lee, J.S., et al. J. Biol. Chem. 285(11):8104-8113(2010) Wu, C., et al. Proteomics 7(11):1775-1785(2007) Olsen, J.V., et al. Cell 127(3):635-648(2006)