

RNF144A Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP14399c

Specification

RNF144A Antibody (Center) - Product Information

Application WB, IHC-P,E **Primary Accession** P50876 Other Accession NP 055561.2 Reactivity Human Host **Rabbit** Clonality **Polyclonal** Isotype Rabbit IgG Calculated MW 32890 Antigen Region 156-184

RNF144A Antibody (Center) - Additional Information

Gene ID 9781

Other Names

E3 ubiquitin-protein ligase RNF144A, 632-, RING finger protein 144A, UbcM4-interacting protein 4, Ubiquitin-conjugating enzyme 7-interacting protein 4, RNF144A, KIAA0161, RNF144, UBCE7IP4

Target/Specificity

This RNF144A antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 156-184 amino acids from the Central region of human RNF144A.

Dilution

WB~~1:1000 IHC-P~~1:10~50

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

RNF144A Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

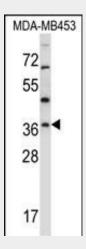
RNF144A Antibody (Center) - Protein Information

Name RNF144A

Synonyms KIAA0161, RNF144, UBCE7IP4

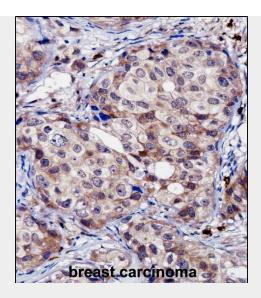
Function E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:26216882). Mediates the ubiquitination and degradation of the DNA damage kinase PRKDC during DNA damage (PubMed:24979766). Positively regulates DNA virus or exogenous cytosolic DNA-triggered innate immune response by mediating STING1 ubiquitination and increasing its 'Lys-6'-linked ubiquitination and translocation from the endoplasmic reticulum to the Golgi leading to downstream signaling pathways (PubMed:37955227). Plays a positive role in EGF-dependent cell proliferation by prolonging EGF/EGFR signaling during EGF stimulation through EGFR ubiquitination (PubMed:30171075). Increases ERK activity independently of EGFR signaling by promoting polyubiquitination and subsequent degradation of VRK3 in the cytosol (PubMed:33067254).

Cellular Location


Cell membrane; Single-pass membrane protein. Cytoplasmic vesicle membrane. Endosome membrane. Endoplasmic reticulum membrane

RNF144A Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

RNF144A Antibody (Center) - Images

RNF144A Antibody (Center) (Cat. #AP14399c) western blot analysis in MDA-MB453 cell line lysates (35ug/lane). This demonstrates the RNF144A antibody detected the RNF144A protein (arrow).

RNF144A Antibody (Center) (AP14399c)immunohistochemistry analysis in formalin fixed and paraffin embedded human breast carcinoma followed by peroxidase conjugation of the secondary antibody and DAB staining. This data demonstrates the use of RNF144A Antibody (Center) for immunohistochemistry. Clinical relevance has not been evaluated.

RNF144A Antibody (Center) - Background

The protein encoded by this protein contains a RING finger, a motif known to be involved in protein-DNA and protein-protein interactions. The mouse counterpart of this protein has been shown to interact with Ube2I3/UbcM4, which is an ubiquitin-conjugating enzyme involved in embryonic development.

RNF144A Antibody (Center) - References

Rose, J.E., et al. Mol. Med. 16 (7-8), 247-253 (2010): Adkins, D.E., et al. Mol. Psychiatry (2010) In press: Hoja, M.R., et al. Exp. Cell Res. 259(1):239-246(2000) Martinez-Noel, G., et al. FEBS Lett. 454(3):257-261(1999)