

SMAD9 Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP14903C

Specification

SMAD9 Antibody (Center) - Product Information

Application WB, IHC-P-Leica,E

Primary Accession 015198

Other Accession NP 005896.1, NP 001120689.1

Reactivity
Host
Clonality
Polyclonal
Isotype
Antigen Region

Human
Rabbit
Polyclonal
Rabbit IgG
200-228

SMAD9 Antibody (Center) - Additional Information

Gene ID 4093

Other Names

Mothers against decapentaplegic homolog 9, MAD homolog 9, Mothers against DPP homolog 9, Madh6, SMAD family member 9, SMAD 9, Smad9, SMAD9, MADH6, MADH9

Target/Specificity

This SMAD9 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 200-228 amino acids from the Central region of human SMAD9.

Dilution

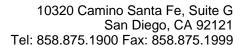
WB~~1:2000 IHC-P-Leica~~1:500

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.


Precautions

SMAD9 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

SMAD9 Antibody (Center) - Protein Information

Name SMAD9

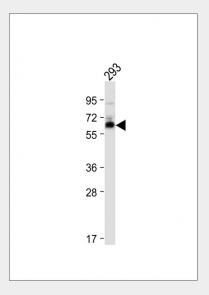
Synonyms MADH6, MADH9, SMAD8 {ECO:0000303|PubMed:

Function Transcriptional modulator activated by BMP (bone morphogenetic proteins) type 1 receptor kinase. SMAD9 is a receptor- regulated SMAD (R-SMAD).

Cellular Location

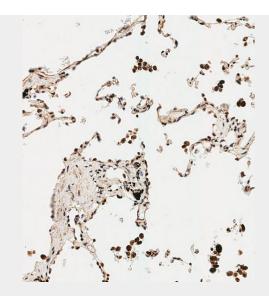
Cytoplasm. Nucleus. Note=In the cytoplasm in the absence of ligand. Migration to the nucleus when complexed with SMAD4 (By similarity).

Tissue Location

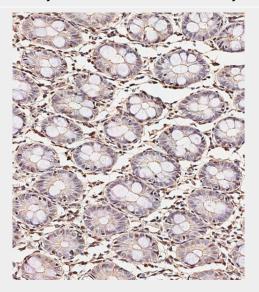

Expressed in heart, brain, placenta, lung, skeletal muscle, prostate, testis, ovary and small intestine. Also expressed in fetal brain, lung and kidney

SMAD9 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

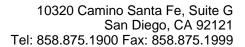

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

SMAD9 Antibody (Center) - Images



Anti-SMAD9 Antibody (Center) at 1:2000 dilution \pm 293 whole cell lysate Lysates/proteins at 20 μ g per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size : 52 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

Immunohistochemical analysis of paraffin-embedded Human lung tissue using AP14903C performed on the Leica® BOND RXm. Tissue was fixed with formaldehyde at room temperature, antigen retrieval was by heat mediation with a EDTA buffer (pH9. 0). Samples were incubated with primary antibody(1:500) for 1 hours at room temperature. A undiluted biotinylated CRF Anti-Polyvalent HRP Polymer antibody was used as the secondary antibody.



Immunohistochemical analysis of paraffin-embedded Human colon tissue using AP14903C performed on the Leica® BOND RXm. Tissue was fixed with formaldehyde at room temperature, antigen retrieval was by heat mediation with a EDTA buffer (pH9. 0). Samples were incubated with primary antibody(1:500) for 1 hours at room temperature. A undiluted biotinylated CRF Anti-Polyvalent HRP Polymer antibody was used as the secondary antibody.

SMAD9 Antibody (Center) - Background

The protein encoded by this gene is a member of the SMAD family, which transduces signals from TGF-beta family members. The encoded protein is activated by bone morphogenetic proteins and interacts with SMAD4. Two transcript variants encoding different isoforms have been found for this gene.

SMAD9 Antibody (Center) - References

Rose, J.E., et al. Mol. Med. 16 (7-8), 247-253 (2010): Liu, Y., et al. FASEB J. 23(7):2299-2306(2009) Su, D., et al. J. Biol. Chem. 284(18):12153-12164(2009) Shintani, M., et al. J. Med. Genet. 46(5):331-337(2009) Hoover, L.L., et al. Sci Signal 1 (46), PE48 (2008):