

Mouse Cdk8 Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP16262c

Specification

Mouse Cdk8 Antibody (Center) - Product Information

Application WB,E
Primary Accession Q8R3L8

Other Accession <u>P49336</u>, <u>Q8JH47</u>, <u>NP_705827.2</u>

Reactivity
Predicted
Predicted
Host
Clonality
Isotype
Calculated MW
Antigen Region

Human
Zebrafish
Rabbit
Polyclonal
Rabbit IgG
245-272

Mouse Cdk8 Antibody (Center) - Additional Information

Gene ID 264064

Other Names

Cyclin-dependent kinase 8, Cell division protein kinase 8, Mediator complex subunit CDK8, Mediator of RNA polymerase II transcription subunit CDK8, Cdk8

Target/Specificity

This Mouse Cdk8 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 245-272 amino acids from the Central region of mouse Cdk8.

Dilution

WB~~1:1000

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

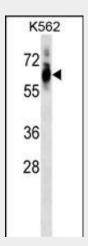
Precautions

Mouse Cdk8 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

Mouse Cdk8 Antibody (Center) - Protein Information

Name Cdk8

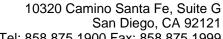
Function Component of the Mediator complex, a coactivator involved in regulated gene transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene- specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. Phosphorylates the CTD (C- terminal domain) of the large subunit of RNA polymerase II (RNAp II), which may inhibit the formation of a transcription initiation complex. Phosphorylates CCNH leading to down-regulation of the TFIIH complex and transcriptional repression. Recruited through interaction with MAML1 to hyperphosphorylate the intracellular domain of NOTCH, leading to its degradation (By similarity).

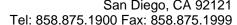

Cellular Location Nucleus.

Mouse Cdk8 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture


Mouse Cdk8 Antibody (Center) - Images



Mouse Cdk8 Antibody (Center) (Cat. #AP16262c) western blot analysis in K562 cell line lysates (35ug/lane). This demonstrates the Cdk8 antibody detected the Cdk8 protein (arrow).

Mouse Cdk8 Antibody (Center) - Background

Component of the Mediator complex, a coactivator involved in regulated gene transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. Phosphorylates the CTD (C-terminal domain) of the large

subunit of RNA polymerase II (RNAp II), which may inhibit the formation of a transcription initiation complex. Phosphorylates CCNH leading to down-regulation of the TFIIH complex and transcriptional repression. Recruited through interaction with MAML1 to hyperphosphorylate the intracellular domain of NOTCH, leading to its degradation (By similarity).

Mouse Cdk8 Antibody (Center) - References

Alarcon, C., et al. Cell 139(4):757-769(2009) Westerling, T., et al. Mol. Cell. Biol. 27(17):6177-6182(2007) Jang, M.K., et al. Mol. Cell 19(4):523-534(2005) Tomomori-Sato, C., et al. J. Biol. Chem. 279(7):5846-5851(2004) Zambrowicz, B.P., et al. Proc. Natl. Acad. Sci. U.S.A. 100(24):14109-14114(2003)