

HDAC1 Antibody (Center S423)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP16867c

Specification

HDAC1 Antibody (Center S423) - Product Information

Application Primary Accession Other Accession Reactivity Host Clonality Isotype Calculated MW Antigen Region IF, WB,E <u>Q13547</u> <u>NP_004955.2</u> Human, Mouse, Rat Rabbit Polyclonal Rabbit IgG 55103 402-430

HDAC1 Antibody (Center S423) - Additional Information

Gene ID 3065

Other Names Histone deacetylase 1, HD1, HDAC1, RPD3L1

Target/Specificity This HDAC1 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 402-430 amino acids from the Central region of human HDAC1.

Dilution IF~~1:10~50 WB~~1:1000

Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions HDAC1 Antibody (Center S423) is for research use only and not for use in diagnostic or therapeutic procedures.

HDAC1 Antibody (Center S423) - Protein Information

Name HDAC1 {ECO:0000303|PubMed:10846170, ECO:0000312|HGNC:HGNC:4852}

Function Histone deacetylase that catalyzes the deacetylation of lysine residues on the

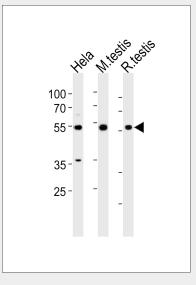
N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed: 16762839, PubMed: 17704056, PubMed: 28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:<u>16762839</u>, PubMed:<u>17704056</u>). Histone deacetylases act via the formation of large multiprotein complexes (PubMed: 16762839, PubMed: 17704056). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:<u>16428440</u>, PubMed:<u>28977666</u>). As part of the SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed: 21041482). Also functions as a deacetylase for non-histone targets, such as NR1D2, RELA, SP1, SP3, STAT3 and TSHZ3 (PubMed:12837748, PubMed:16285960, PubMed:16478997, PubMed:17996965, PubMed: <u>19343227</u>). Deacetylates SP proteins, SP1 and SP3, and regulates their function (PubMed:12837748, PubMed:16478997), Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons (PubMed: 19081374). Upon calcium stimulation, HDAC1 is released from the complex and CREBBP is recruited, which facilitates transcriptional activation (PubMed: <u>19081374</u>). Deacetylates TSHZ3 and regulates its transcriptional repressor activity (PubMed: 19343227). Deacetylates 'Lys-310' in RELA and thereby inhibits the transcriptional activity of NF-kappa-B (PubMed: 17000776). Deacetylates NR1D2 and abrogates the effect of KAT5- mediated relieving of NR1D2 transcription repression activity (PubMed:<u>17996965</u>). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Involved in CIART-mediated transcriptional repression of the circadian transcriptional activator: CLOCK-BMAL1 heterodimer (By similarity). Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex or CRY1 through histone deacetylation (By similarity). In addition to protein deacetylase activity, also has protein-lysine deacylase activity: acts as a protein decrotonylase by mediating decrotonylation ((2E)-butenoyl) of histones (PubMed: 28497810).

Cellular Location Nucleus

Tissue Location Ubiquitous, with higher levels in heart, pancreas and testis, and lower levels in kidney and brain


HDAC1 Antibody (Center S423) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

HDAC1 Antibody (Center S423) - Images

Fluorescent confocal image of Hela cell stained with HDAC1 Antibody (Center S423)(Cat#AP16867c).Hela cells were fixed with 4% PFA (20 min), permeabilized with Triton X-100 (0.1%, 10 min), then incubated with HDAC1 primary antibody (1:25, 1 h at 37°C). For secondary antibody, Alexa Fluor® 488 conjugated donkey anti-rabbit antibody (green) was used (1:400, 50 min at 37°C).Cytoplasmic actin was counterstained with Alexa Fluor® 555 (red) conjugated Phalloidin (7units/ml, 1 h at 37°C). Nuclei were counterstained with DAPI (blue) (10 μ g/ml, 10 min). HDAC1 immunoreactivity is localized to Nucleus significantly.

HDAC1 Antibody (S423) (Cat. #AP16867c) western blot analysis in Hela cell line and mouse testis,rat testis tissue lysates (35ug/lane).This demonstrates the HDAC1 antibody detected the HDAC1 protein (arrow).

HDAC1 Antibody (Center S423) - Background

Histone acetylation and deacetylation, catalyzed by multisubunit complexes, play a key role in the regulation of eukaryotic gene expression. The protein encoded by this gene belongs to the histone deacetylase/acuc/apha family and is a component of the histone deacetylase complex. It also interacts with retinoblastoma tumor-suppressor protein and this complex is a key element in the control of cell proliferation and differentiation. Together with metastasis-associated protein-2, it

deacetylates p53 and modulates its effect on cell growth and apoptosis.

HDAC1 Antibody (Center S423) - References

Yang, Z., et al. Clin. Chem. Lab. Med. 48(12):1785-1791(2010) Grausenburger, R., et al. J. Immunol. 185(6):3489-3497(2010) Miller, K.M., et al. Nat. Struct. Mol. Biol. 17(9):1144-1151(2010) Brandt, S., et al. Int. J. Biochem. Cell Biol. 42(9):1472-1481(2010) Leone, V., et al. Oncogene 29(30):4341-4351(2010)