

Mouse Prr5 Antibody (C-term)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP19341b

Specification

Mouse Prr5 Antibody (C-term) - Product Information

Application WB,E **Primary Accession** 0812A5 Other Accession NP 666173.4 Reactivity Mouse Host **Rabbit** Clonality **Polyclonal** Isotype Rabbit IgG Calculated MW 42523 Antigen Region 277-305

Mouse Prr5 Antibody (C-term) - Additional Information

Gene ID 109270

Other Names

Proline-rich protein 5, Protein observed with Rictor-1, Protor-1, Prr5 {ECO:0000250|UniProtKB:P85299}, Protor1

Target/Specificity

This Mouse Prr5 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 277-305 amino acids from the C-terminal region of mouse Prr5.

Dilution

WB~~1:1000

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Mouse Prr5 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

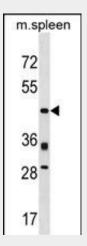
Mouse Prr5 Antibody (C-term) - Protein Information

Name Prr5 {ECO:0000250|UniProtKB:P85299}

Synonyms Protor1

Function Subunit of mTORC2, which regulates cell growth and survival in response to hormonal signals. mTORC2 is activated by growth factors, but, in contrast to mTORC1, seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. PRR5 plays an important role in regulation of PDGFRB expression and in modulation of platelet-derived growth factor signaling. May act as a tumor suppressor in breast cancer (By similarity).

Tissue Location


Ubiquitously expressed. Expressed at high levels in kidney.

Mouse Prr5 Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Mouse Prr5 Antibody (C-term) - Images

Mouse Prr5 Antibody (C-term)(Cat. #AP19341b) western blot analysis in mouse spleen tissue lysates (35ug/lane). This demonstrates the Prr5 antibody detected the Prr5 protein (arrow).

Mouse Prr5 Antibody (C-term) - Background

Subunit of mTORC2, which regulates cell growth and survival in response to hormonal signals. mTORC2 is activated by growth factors, but, in contrast to mTORC1, seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical

role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. PRR5 plays an important role in regulation of PDGFRB expression and in modulation of platelet-derived growth factor signaling. May act as a tumor suppressor in breast cancer (By similarity).

Mouse Prr5 Antibody (C-term) - References

Johnstone, C.N., et al. Genomics 85(3):338-351(2005) Shan, Z., et al. Gene 303, 55-61 (2003) :