

ROS1 Antibody (C-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP20883c

Specification

ROS1 Antibody (C-term) - Product Information

Application WB,E
Primary Accession P08922
Reactivity Human
Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Calculated MW 263915

ROS1 Antibody (C-term) - Additional Information

Gene ID 6098

Other Names

Proto-oncogene tyrosine-protein kinase ROS, Proto-oncogene c-Ros, Proto-oncogene c-Ros-1, Receptor tyrosine kinase c-ros oncogene 1, c-Ros receptor tyrosine kinase, ROS1, MCF3, ROS

Target/Specificity

This ROS1 antibody is generated from a rabbit immunized with a KLH conjugated synthetic peptide between 1744-1777 amino acids from the C-terminal region of human ROS1.

Dilution

WB~~1:1000

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

ROS1 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

ROS1 Antibody (C-term) - Protein Information

Name ROS1

Synonyms MCF3, ROS

Function Receptor tyrosine kinase (RTK) that plays a role in epithelial cell differentiation and

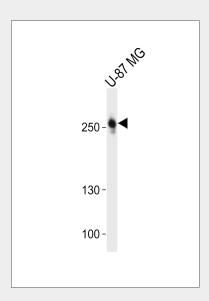
Tel: 858.875.1900 Fax: 858.875.1999

regionalization of the proximal epididymal epithelium. NELL2 is an endogenous ligand for ROS1. Upon endogenous stimulation by NELL2, ROS1 activates the intracellular signaling pathway and triggers epididymal epithelial differentiation and subsequent sperm maturation (By similarity). May activate several downstream signaling pathways related to cell differentiation, proliferation, growth and survival including the PI3 kinase-mTOR signaling pathway. Mediates the phosphorylation of PTPN11, an activator of this pathway. May also phosphorylate and activate the transcription factor STAT3 to control anchorage-independent cell growth. Mediates the phosphorylation and the activation of VAV3, a guanine nucleotide exchange factor regulating cell morphology. May activate other downstream signaling proteins including AKT1, MAPK1, MAPK3, IRS1 and PLCG2.

Cellular Location

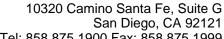
Cell membrane; Single-pass type I membrane protein

Tissue Location


Expressed in brain. Expression is increased in primary gliomas.

ROS1 Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

ROS1 Antibody (C-term) - Images

Western blot analysis of lysate from U-87 MG cell line, using ROS1 Antibody (C-term)(Cat. #AP20883c). AP20883c was diluted at 1:1000. A goat anti-rabbit IgG H&L(HRP) at 1:10000 dilution was used as the secondary antibody. Lysate at 20ug.

ROS1 Antibody (C-term) - Background

Tel: 858.875.1900 Fax: 858.875.1999

Orphan receptor tyrosine kinase (RTK) that plays a role in epithelial cell differentiation and regionalization of the proximal epididymal epithelium. May activate several downstream signaling pathways related to cell differentiation, proliferation, growth and survival including the PI3 kinase-mTOR signaling pathway. Mediates the phosphorylation of PTPN11, an activator of this pathway. May also phosphorylate and activate the transcription factor STAT3 to control anchorage-independent cell growth. Mediates the phosphorylation and the activation of VAV3, a guanine nucleotide exchange factor regulating cell morphology. May activate other downstream signaling proteins including AKT1, MAPK1, MAPK3, IRS1 and PLCG2.

ROS1 Antibody (C-term) - References

Birchmeier C., et al. Proc. Natl. Acad. Sci. U.S.A. 87:4799-4803(1990). Mungall A.J., et al. Nature 425:805-811(2003). Matsushime H., et al. Mol. Cell. Biol. 6:3000-3004(1986). Birchmeier C., et al. Mol. Cell. Biol. 6:3109-3116(1986). Watkins D., et al. Cancer Genet. Cytogenet. 72:130-136(1994).