

## **ACOT8 Antibody (C-term)**

Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP21424b

### **Specification**

## ACOT8 Antibody (C-term) - Product Information

Application WB,E
Primary Accession O14734
Reactivity Mouse, Rat
Host Rabbit
Clonality polyclonal
Isotype Rabbit IgG
Calculated MW 35914

# ACOT8 Antibody (C-term) - Additional Information

#### **Gene ID 10005**

#### **Other Names**

Acyl-coenzyme A thioesterase 8, Acyl-CoA thioesterase 8, Choloyl-coenzyme A thioesterase, HIV-Nef-associated acyl-CoA thioesterase, PTE-2, Peroxisomal acyl-coenzyme A thioester hydrolase 1, PTE-1, Peroxisomal long-chain acyl-CoA thioesterase 1, Thioesterase II, hACTE-III, hACTEIII, hTE, ACOT8, ACTEIII, PTE1, PTE2

### Target/Specificity

This ACOT8 antibody is generated from a rabbit immunized with a KLH conjugated synthetic peptide between 275-310 amino acids from the C-terminal region of human ACOT8.

## **Dilution**

WB~~1:2000

### **Format**

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

#### **Storage**

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

## **Precautions**

ACOT8 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

## ACOT8 Antibody (C-term) - Protein Information

### Name ACOT8

Synonyms ACTEIII, PTE1 {ECO:0000303|PubMed:100925

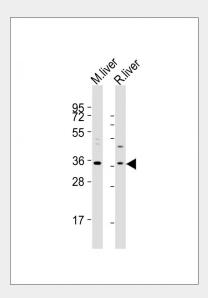


**Function** Catalyzes the hydrolysis of acyl-CoAs into free fatty acids and coenzyme A (CoASH), regulating their respective intracellular levels (PubMed:9299485, PubMed:9153233, PubMed:15194431). Displays no strong substrate specificity with respect to the carboxylic acid moiety of Acyl-CoAs (By similarity). Hydrolyzes medium length (C2 to C20) straight-chain, saturated and unsaturated acyl-CoAS but is inactive towards substrates with longer aliphatic chains (PubMed:9299485, PubMed:9153233). Moreover, it catalyzes the hydrolysis of CoA esters of bile acids, such as choloyl-CoA and chenodeoxycholoyl-CoA and competes with bile acid CoA:amino acid N-acyltransferase (BAAT) (By similarity). Is also able to hydrolyze CoA esters of dicarboxylic acids (By similarity). It is involved in the metabolic regulation of peroxisome proliferation (PubMed:15194431).

#### **Cellular Location**

Peroxisome matrix. Note=Predominantly localized in the peroxisome but a localization to the cytosol cannot be excluded

#### **Tissue Location**


Detected in a T-cell line (at protein level). Ubiquitous (PubMed:9153233, PubMed:9299485)

# **ACOT8 Antibody (C-term) - Protocols**

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

## ACOT8 Antibody (C-term) - Images



All lanes : Anti-ACOT8 Antibody (C-term) at 1:2000 dilution Lane 1: mouse liver lysates Lane 2: rat liver lysates Lysates/proteins at 20  $\mu$ g per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution Predicted band size : 36 kDa Blocking/Dilution buffer: 5% NFDM/TBST.



# ACOT8 Antibody (C-term) - Background

Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May mediate Nef-induced down-regulation of CD4. Major thioesterase in peroxisomes. Competes with BAAT (Bile acid CoA: amino acid N- acyltransferase) for bile acid-CoA substrate (such as chenodeoxycholoyl-CoA). Shows a preference for medium-length fatty acyl-CoAs (By similarity). May be involved in the metabolic regulation of peroxisome proliferation.

## ACOT8 Antibody (C-term) - References

Watanabe H., et al. Biochem. Biophys. Res. Commun. 238:234-239(1997). Liu L.X., et al. J. Biol. Chem. 272:13779-13785(1997). Jones J.M., et al. J. Biol. Chem. 274:9216-9223(1999). Deloukas P., et al. Nature 414:865-871(2001). Ishizuka M., et al. Exp. Cell Res. 297:127-141(2004).