

ATP5EP2 Antibody (Center)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP21779c

Specification

ATP5EP2 Antibody (Center) - Product Information

Application WB.E **Primary Accession** O5VTU8 Reactivity Human Host **Rabbit** Clonality polyclonal Isotype Rabbit IgG Calculated MW 5807 **Antigen Region** 19-52

ATP5EP2 Antibody (Center) - Additional Information

Other Names

ATP synthase subunit epsilon-like protein, mitochondrial, ATP5EP2

Target/Specificity

This ATP5EP2 antibody is generated from a rabbit immunized with a KLH conjugated synthetic peptide between 19-52 amino acids from the Central region of human ATP5EP2.

Dilution

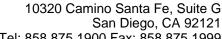
WB~~1:2000

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.


Precautions

ATP5EP2 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

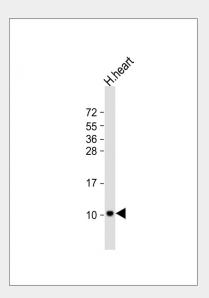
ATP5EP2 Antibody (Center) - Protein Information

Name ATP5F1EP2 (HGNC:34026)

Function Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During

catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and of the central stalk which is part of the complex rotary element. Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits (By similarity).

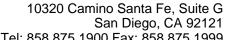
Cellular Location


Mitochondrion inner membrane {ECO:0000250|UniProtKB:P56381}

ATP5EP2 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture


ATP5EP2 Antibody (Center) - Images

Anti-ATP5EP2 Antibody (Center) at 1:2000 dilution + human heart lysate Lysates/proteins at 20 μg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size: 6 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

ATP5EP2 Antibody (Center) - Background

Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and of the central stalk which is part of the

complex rotary element. Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits (By similarity).

ATP5EP2 Antibody (Center) - References

Dunham A., et al. Nature 428:522-528(2004).