

Phospho-Erk1/2(Thr202/Tyr204) Antibody

Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP3906a

Specification

Phospho-Erk1/2(Thr202/Tyr204) Antibody - Product Information

Application WB,E
Primary Accession P27361

Other Accession P40417, P46196, P28482, P63085, P63086,

P26696, Q63844, P21708, P39745

Reactivity Human, Mouse

Predicted Drosophila, Bovine, Rat, Xenopus,

C.Elegans Rabbit polyclonal Rabbit IgG

43136

Isotype Calculated MW

Phospho-Erk1/2(Thr202/Tyr204) Antibody - Additional Information

Gene ID 5595

Host

Clonality

Other Names

Mitogen-activated protein kinase 3, MAP kinase 3, MAPK 3, 2.7.11.24, ERT2, Extracellular signal-regulated kinase 1, ERK-1, Insulin-stimulated MAP2 kinase, MAP kinase isoform p44, p44-MAPK, Microtubule-associated protein 2 kinase, p44-ERK1, MAPK3, ERK1, PRKM3

Target/Specificity

This Phospho-Erk1/2(Thr202/Tyr204) antibody is generated from a rabbit immunized with a KLH conjugated synthetic peptide between 176-208 amino acids from human Phospho-Erk1/2(Thr202/Tyr204).

Dilution

WB~~1:1000

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Phospho-Erk1/2(Thr202/Tyr204) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Phospho-Erk1/2(Thr202/Tyr204) Antibody - Protein Information

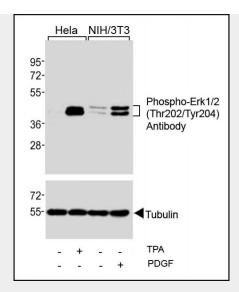
Name MAPK3

Synonyms ERK1, PRKM3

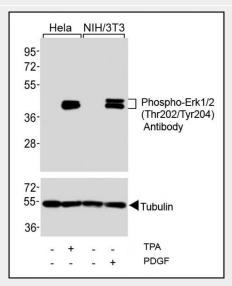
Function Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed: 34497368). MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DEPTOR, FRS2 or GRB10) (PubMed: 35216969). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade.

Cellular Location

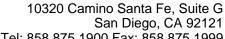
Cytoplasm {ECO:0000250|UniProtKB:P21708}. Nucleus. Membrane, caveola {ECO:0000250|UniProtKB:P21708}. Cell junction, focal adhesion {ECO:0000250|UniProtKB:Q63844} Note=Autophosphorylation at Thr-207 promotes nuclear localization (PubMed:19060905). PEA15-binding redirects the biological outcome of MAPK3 kinase-signaling by sequestering MAPK3 into the cytoplasm (By similarity). {ECO:0000250|UniProtKB:Q63844, ECO:0000269|PubMed:19060905}


Phospho-Erk1/2(Thr202/Tyr204) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Phospho-Erk1/2(Thr202/Tyr204) Antibody - Images


Western blot analysis of extracts from Hela cells, untreated or treated with TPA (200nM), and NIH/3T3 cells, untreated or treated with PDGF (100ng/ml), using Phospho-Erk1/2(Thr202/Tyr204) Antibody (upper) or Tubulin (lower).

Western blot analysis of extracts from Hela cells, untreated or treated with TPA (200nM), and NIH/3T3 cells, untreated or treated with PDGF (100ng/ml), using Phospho-Erk1/2(Thr202/Tyr204) Antibody (upper) or Tubulin (lower).

Phospho-Erk1/2(Thr202/Tyr204) Antibody - Background

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the

Tel: 858.875.1900 Fax: 858.875.1999

regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade.

Phospho-Erk1/2(Thr202/Tyr204) Antibody - References

Charest D.L., et al. Mol. Cell. Biol. 13:4679-4690(1993). Aebersold D.M., et al. Submitted (APR-2001) to the EMBL/GenBank/DDBJ databases. Cheng H., et al. Submitted (FEB-2006) to the EMBL/GenBank/DDBJ databases. Martin I., et al. Nature 432:988-994(2004). Mural R.J., et al. Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.