CHEK2 Antibody (N-term)
Peptide Affinity Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP4999a

Specification

CHEK2 Antibody (N-term) - Product Information

<table>
<thead>
<tr>
<th>Application</th>
<th>WB, IHC-P, FC, IF,E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Accession</td>
<td>O96017</td>
</tr>
<tr>
<td>Reactivity</td>
<td>Human</td>
</tr>
<tr>
<td>Host</td>
<td>Rabbit</td>
</tr>
<tr>
<td>Clonality</td>
<td>Polyclonal</td>
</tr>
<tr>
<td>Isotype</td>
<td>Rabbit Ig</td>
</tr>
<tr>
<td>Calculated MW</td>
<td>60915</td>
</tr>
<tr>
<td>Antigen Region</td>
<td>111-141</td>
</tr>
</tbody>
</table>

CHEK2 Antibody (N-term) - Additional Information

Gene ID 11200

Other Names
Serine/threonine-protein kinase Chk2, CHK2 checkpoint homolog, Cds1 homolog, Hucds1, hCds1, Checkpoint kinase 2, CHEK2, CDS1, CHK2, RAD53

Target/Specificity
This CHEK2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 111-141 amino acids from the N-terminal region of human CHEK2.

Dilution
WB~~1:1000
IHC-P~~1:50~100
FC~~1:10~50
IF~~1:10~50

Format
Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage
Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions
CHEK2 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures.

All lanes : Anti-CHEK2 Antibody (N-term) at 1:1000 dilution Lane 1: HCT116 whole cell lysate Lane 2: Jurkat whole cell lysate Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size : 61 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

CHEK2 Antibody (N-term) (Cat. #AP4999a) western blot analysis in K562,NCI-H460 cell line lysates (35µg/lane).This demonstrates the CHEK2 antibody detected the CHEK2 protein (arrow).
CHEK2 Antibody (N-term) - Protein Information

Name CHEK2

Synonyms CDS1, CHK2, RAD53

Function
Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles. Following activation, phosphorylates numerous effectors preferentially at the consensus sequence [L-X-R-X-X-S/T]. Regulates cell cycle checkpoint arrest through phosphorylation of CDC25A, CDC25B and CDC25C, inhibiting their activity. Inhibition of CDC25 phosphatase activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. May also phosphorylate NEK6 which is involved in G2/M cell cycle arrest.
Regulates DNA repair through phosphorylation of BRCA2, enhancing the association of RAD51 with chromatin which promotes DNA repair by homologous recombination. Also stimulates the transcription of genes involved in DNA repair (including BRCA2) through the phosphorylation and activation of the transcription factor FOXM1. Regulates apoptosis through the phosphorylation of p53/TP53, MDM4 and PML. Phosphorylation of p53/TP53 at 'Ser-20' by CHEK2 may alleviate inhibition by MDM2, leading to accumulation of active p53/TP53. Phosphorylation of MDM4 may also reduce degradation of p53/TP53. Also controls the transcription of pro-apoptotic genes through phosphorylation of the transcription factor E2F1. Tumor suppressor, it may also have a DNA damage-independent function in mitotic spindle assembly by phosphorylating BRCA1. Its absence may be a cause of the chromosomal instability observed in some cancer cells. Promotes the CCAR2-SIRT1 association and is required for CCAR2-mediated SIRT1 inhibition (PubMed:25361978).

Cellular Location
Isoform 2: Nucleus. Note=Isoform 10 is present throughout the cell Isoform 7: Nucleus. Isoform 12: Nucleus.

Tissue Location
High expression is found in testis, spleen, colon and peripheral blood leukocytes. Low expression is found in other tissues

CHEK2 Antibody (N-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

CHEK2 Antibody (N-term) (Cat. #AP4999a) IHC analysis in formalin fixed and paraffin embedded colon carcinoma followed by peroxidase conjugation of the secondary antibody and DAB staining. This data demonstrates the use of the CHEK2 Antibody (N-term) for immunohistochemistry. Clinical relevance has not been evaluated.

CHEK2 Antibody (N-term) (Cat. #AP4999a) flow cytometric analysis of K562 cells (right histogram) compared to a negative control cell (left histogram). FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

Confocal immunofluorescent analysis of CHEK2 Antibody (N-term)(Cat#AP4999a) with HepG2 cell followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG (green). Actin filaments have been labeled with Alexa Fluor 555.
CHEK2 Antibody (N-term) - Background

CHEK2 is a cell cycle checkpoint regulator and putative tumor suppressor. It contains a forkhead-associated protein interaction domain essential for activation in response to DNA damage and is rapidly phosphorylated in response to replication blocks and DNA damage. When activated, the encoded protein is known to inhibit CDC25C phosphatase, preventing entry into mitosis, and has been shown to stabilize the tumor suppressor protein p53, leading to cell cycle arrest in G1. In addition, this protein interacts with and phosphorylates BRCA1, allowing BRCA1 to restore survival after DNA damage. Mutations in this gene have been linked with Li-Fraumeni syndrome, a highly penetrant familial cancer phenotype usually associated with inherited mutations in TP53.

CHEK2 Antibody (N-term) - References

CHEK2 Antibody (N-term) - Citations

- 53BP1 loss induces chemoresistance of colorectal cancer cells to 5-fluorouracil by inhibiting the ATM-CHK2-P53 pathway
- Deficiency of 53BP1 inhibits the radiosensitivity of colorectal cancer