## Rabbit Anti-TrkB Polyclonal Antibody Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP52272 # **Specification** ## Rabbit Anti-TrkB Polyclonal Antibody - Product Information Application Primary Accession Reactivity Host Clonality WB, IHC-P, FC O16620 Human, Mouse, Rat Rabbit Polyclonal ## Rabbit Anti-TrkB Polyclonal Antibody - Additional Information #### **Gene ID 4915** # **Other Names** TRKB; trk-B; GP145-TrkB; BDNF/NT-3 growth factors receptor; Neurotrophic tyrosine kinase receptor type 2; TrkB tyrosine kinase; Tropomyosin-related kinase B; NTRK2 #### **Dilution** <span class ="dilution\_WB">WB~~1:100~1:500</span><br \> <span class ="dilution\_IHC-P">IHC-P~~1:100~1:500</span> <br \> <span class ="dilution\_FC">FC~~1:20~1:100</span> #### **Format** 0.01M TBS(pH7.4), 0.09% (W/V) sodium azide and 50% Glyce ## **Storage** Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. #### Rabbit Anti-TrkB Polyclonal Antibody - Protein Information #### Name NTRK2 **Synonyms** TRKB ## **Function** Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity (By similarity). Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2 (PubMed:<a href="http://www.uniprot.org/citations/7574684" target="\_blank">7574684</a>, PubMed:<a href="http://www.uniprot.org/citations/15494731" target="\_blank">15494731</a>, Upon ligand- binding, undergoes homodimerization, autophosphorylation and activation (PubMed:<a href="http://www.uniprot.org/citations/15494731") Tel: 858.875.1900 Fax: 858.875.1999 target=" blank">15494731</a>). Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia. #### **Cellular Location** Cell membrane; Single-pass type I membrane protein. Endosome membrane {ECO:0000250|UniProtKB:P15209}; Single-pass type I membrane protein {ECO:0000250|UniProtKB:P15209}. Early endosome membrane {ECO:0000250|UniProtKB:P15209}. Cell projection, axon {ECO:0000250|UniProtKB:Q63604}. Cell projection, dendrite {ECO:0000250|UniProtKB:Q63604}. Cytoplasm, perinuclear region {ECO:0000250|UniProtKB:Q63604}. Postsynaptic density {ECO:0000250|UniProtKB:P15209}. Note=Internalized to endosomes upon ligand-binding. {ECO:0000250|UniProtKB:P15209} #### **Tissue Location** Isoform TrkB is expressed in the central and peripheral nervous system. In the central nervous system (CNS), expression is observed in the cerebral cortex, hippocampus, thalamus, choroid plexus, granular layer of the cerebellum, brain stem, and spinal cord. In the peripheral nervous system, it is expressed in many cranial ganglia, the ophthalmic nerve, the vestibular system, multiple facial structures, the submaxillary glands, and dorsal root ganglia Isoform TrkB-T1 is mainly expressed in the brain but also detected in other tissues including pancreas, kidney and heart. Isoform TrkB-T-Shc is predominantly expressed in the brain. # Rabbit Anti-TrkB Polyclonal Antibody - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - <u>Immunofluorescence</u> - Immunoprecipitation - Flow Cytomety - Cell Culture ## Rabbit Anti-TrkB Polyclonal Antibody - Images L1 rat brain lysates L2 rat kidney lysates probed with Anti Trk B/NTRK2 Polyclonal Antibody, Unconjugated (AP52272) at 1:200 overnight at 4°C. Followed by conjugation to secondary antibody at 1:3000 for 90 min at 37°C. Predicted band 90kD. Observed band size:90kD. Formalin-fixed and paraffin embedded: human nasopharyngeal carcinoma labeled with Anti-Trk-B Polyclonal Antibody AP52272, Unconjugated at 1:200 followed by conjugation to the secondary antibody and DAB staining RSC96 cells probed with TrkB Polyclonal Antibody, Unconjugated (AP52272) at [CNC.] for 30 minutes followed by incubation with a conjugated secondary (PE Conjugated) (green) for 30 # minutes compared to control cells (blue), secondary only (light blue) and isotype control (orange). Rabbit Anti-TrkB Polyclonal Antibody - Background Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.