

RAB11FIP2 Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP5475c

Specification

RAB11FIP2 Antibody (Center) - Product Information

Application WB, IHC-P, FC,E **Primary Accession** O7L804 Other Accession NP 055719.1 Reactivity Human Host **Rabbit** Clonality **Polyclonal** Isotype Rabbit IgG Calculated MW 58279 Antigen Region 345-374

RAB11FIP2 Antibody (Center) - Additional Information

Gene ID 22841

Other Names

Rab11 family-interacting protein 2, Rab11-FIP2, NRip11, RAB11FIP2, KIAA0941

Target/Specificity

This RAB11FIP2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 345-374 amino acids from the Central region of human RAB11FIP2.

Dilution

WB~~1:1000 IHC-P~~1:50~100 FC~~1:10~50

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

RAB11FIP2 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

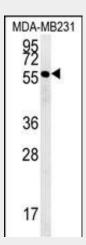
RAB11FIP2 Antibody (Center) - Protein Information

Name RAB11FIP2

Synonyms KIAA0941

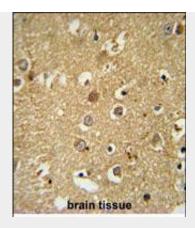
Function A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics.

Cellular Location

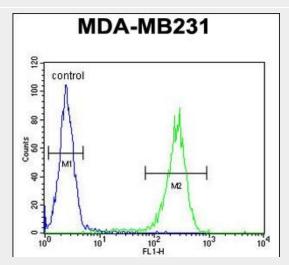

Cell projection, phagocytic cup. Cell membrane; Peripheral membrane protein. Recycling endosome membrane; Peripheral membrane protein Note=Translocates with RAB11A from the vesicles of the endocytic recycling compartment (ERC) to the plasma membrane

RAB11FIP2 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

RAB11FIP2 Antibody (Center) - Images



RAB11FIP2 Antibody (Center) (Cat.#AP5475c) western blot analysis in MDA-MB231 cell line lysates (35ug/lane). This demonstrates the RAB11FIP2 antibody detected the RAB11FIP2 protein (arrow).

RAB11FIP2 Antibody (Center) (Cat. #AP5475c) immunohistochemistry analysis in formalin fixed and paraffin embedded human brain tissue followed by peroxidase conjugation of the secondary antibody and DAB staining. This data demonstrates the use of the RAB11FIP2 Antibody (Center) for immunohistochemistry. Clinical relevance has not been evaluated.

RAB11FIP2 Antibody (Center) (Cat. #AP5475c) flow cytometric analysis of MDA-MB231 cells (right histogram) compared to a negative control cell (left histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

RAB11FIP2 Antibody (Center) - Background

RAB11FIP2 is an adapter protein that plays a role in the secretory pathway. It is thought to be important for endosome recycling and receptor-mediated endocytosis. In endosome recycling, RAB11-FIP2 regulates vesicle transport from the endosomal recycling compartment (ERC) to the plasma membrane.

RAB11FIP2 Antibody (Center) - References

Wang, Z., et al. Cell 135(3):535-548(2008) Utley, T.J., et al. Proc. Natl. Acad. Sci. U.S.A. 105(29):10209-10214(2008) Ducharme, N.A., et al. Am. J. Physiol., Cell Physiol. 293 (3), C1059-C1072 (2007)