

MAPK3 Antibody (N-term)

Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP7500A

Specification

MAPK3 Antibody (N-term) - Product Information

Application WB, IHC-P, FC,E

Primary Accession P27361

Reactivity Human, Mouse, Monkey, Rat

Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Calculated MW 43136
Antigen Region 1-30

MAPK3 Antibody (N-term) - Additional Information

Gene ID 5595

Other Names

Mitogen-activated protein kinase 3, MAP kinase 3, MAPK 3, ERT2, Extracellular signal-regulated kinase 1, ERK-1, Insulin-stimulated MAP2 kinase, MAP kinase isoform p44, p44-MAPK, Microtubule-associated protein 2 kinase, p44-ERK1, MAPK3, ERK1, PRKM3

Target/Specificity

This MAPK3 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 1-30 amino acids from the N-terminal region of human MAPK3.

Dilution

WB~~1:1000 IHC-P~~1:50~100 FC~~1:10~50

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

MAPK3 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures.

MAPK3 Antibody (N-term) - Protein Information

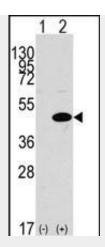
Name MAPK3

Synonyms ERK1, PRKM3

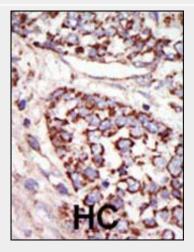
Function Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed: 34497368). MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DEPTOR, FRS2 or GRB10) (PubMed: 35216969). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade.

Cellular Location

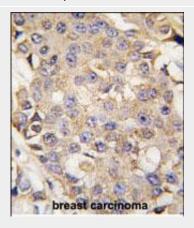
Cytoplasm {ECO:0000250|UniProtKB:P21708}. Nucleus. Membrane, caveola {ECO:0000250|UniProtKB:P21708}. Cell junction, focal adhesion {ECO:0000250|UniProtKB:Q63844} Note=Autophosphorylation at Thr-207 promotes nuclear localization (PubMed:19060905). PEA15-binding redirects the biological outcome of MAPK3 kinase-signaling by sequestering MAPK3 into the cytoplasm (By similarity). {ECO:0000250|UniProtKB:Q63844, ECO:0000269|PubMed:19060905}


MAPK3 Antibody (N-term) - Protocols

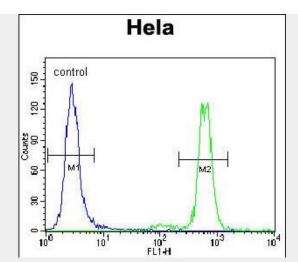
Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

MAPK3 Antibody (N-term) - Images



Western blot analysis of ERK1 (arrow) using rabbit ERK1 (N-term) Pab (Cat. #AP7500a).293 cell lysates (2 ug/lane) either nontransfected (Lane 1) or transiently transfected with the MAPK1 gene (Lane 2) (Origene Technologies).



Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

Formalin-fixed and paraffin-embedded human breast carcinoma tissue reacted with ERK1 antibody (N-term) (Cat.#AP7500a), which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated.

MAPK3 Antibody (N-term) (Cat. #AP7500a) flow cytometric analysis of Hela cells (right histogram) compared to a negative control cell (left histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

MAPK3 Antibody (N-term) - Background

ERK1, a member of the MAP kinase subfamily of Ser/Thr protein kinases, is involved in both the initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors such as ELK-1. It phosphorylates EIF4EBP1 and is required for initiation of translation. The protein also phosphorylates microtubule-associated protein-2 (MAP2). ERK1 is activated and tyrosine phosphorylated in response to insulin and NGF.

MAPK3 Antibody (N-term) - References

Strausberg, R.L., et al., Proc. Natl. Acad. Sci. U.S.A. 99(26):16899-16903 (2002). Charest, D.L., et al., Mol. Cell. Biol. 13(8):4679-4690 (1993). Owaki, H., et al., Biochem. Biophys. Res. Commun. 182(3):1416-1422 (1992). Gonzalez, F.A., et al., FEBS Lett. 304 (2-3), 170-178 (1992).