

SRPK2 Antibody (C-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7553b

Specification

SRPK2 Antibody (C-term) - Product Information

Application WB, IHC-P,E
Primary Accession P78362
Other Accession O54781

Reactivity Human, Mouse

Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Calculated MW 77527
Antigen Region 465-495

SRPK2 Antibody (C-term) - Additional Information

Gene ID 6733

Other Names

SRSF protein kinase 2, SFRS protein kinase 2, Serine/arginine-rich protein-specific kinase 2, SR-protein-specific kinase 2, SRSF protein kinase 2 N-terminal, SRSF protein kinase 2 C-terminal, SRPK2 {ECO:0000312|EMBL:AAH685471}

Target/Specificity

This SRPK2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 465-495 amino acids from the C-terminal region of human SRPK2.

Dilution

WB~~1:1000 IHC-P~~1:50~100

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

SRPK2 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

SRPK2 Antibody (C-term) - Protein Information

Name SRPK2 {ECO:0000312|EMBL:AAH68547.1}

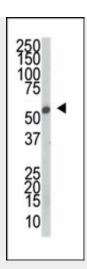
Function Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed: 9472028, PubMed: 18559500, PubMed: 21056976). Promotes neuronal apoptosis by up-regulating cyclin- D1 (CCND1) expression (PubMed: 19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed: 18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed: 18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed: 28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed: 16122776).

Cellular Location

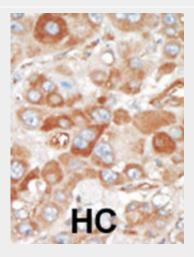
Cytoplasm. Nucleus, nucleoplasm. Nucleus speckle. Chromosome. Note=Shuttles between the nucleus and the cytoplasm (PubMed:19592491, PubMed:21157427, PubMed:21056976) KAT5/TIP60 inhibits its nuclear translocation (PubMed:21157427) Phosphorylation at Thr-492 by PKB/AKT1 promotes nuclear translocation (PubMed:19592491). Preferentially localizes across the entire gene coding region (PubMed:28076779). During transcription, accumulates at chromatin loci where unscheduled R-loops form and colocalizes with paused 'Ser-5'-phosphorlyated POLR2A/RNA polymerase II and helicase DDX23 (PubMed:28076779).

Tissue Location

Highly expressed in brain, moderately expressed in heart and skeletal muscle and at low levels in lung, liver, and kidney

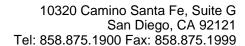

SRPK2 Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

SRPK2 Antibody (C-term) - Images

Western blot analysis of anti-SRPK2 Pab (Cat. #AP7553b) in mouse thymus tissue lysate. SRPK2 (arrow) was detected using purified Pab. Secondary HRP-anti-rabbit was used for signal visualization with chemiluminescence.



Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

SRPK2 Antibody (C-term) - Background

Protein kinases are enzymes that transfer a phosphate group from a phosphate donor, generally the g phosphate of ATP, onto an acceptor amino acid in a substrate protein. By this basic mechanism, protein kinases mediate most of the signal transduction in eukaryotic cells, regulating cellular metabolism, transcription, cell cycle progression, cytoskeletal rearrangement and cell movement, apoptosis, and differentiation. With more than 500 gene products, the protein kinase family is one of the largest families of proteins in eukaryotes. The family has been classified in 8 major groups based on sequence comparison of their tyrosine (PTK) or serine/threonine (STK) kinase catalytic domains. The STE group (homologs of yeast Sterile 7, 11, 20 kinases) consists of 50 kinases related to the mitogen-activated protein kinase (MAPK) cascade families (Ste7/MAP2K, Ste11/MAP3K, and Ste20/MAP4K). MAP kinase cascades, consisting of a MAPK and one or more upstream regulatory kinases (MAPKKs) have been best characterized in the yeast pheromone response pathway. Pheromones bind to Ste cell surface receptors and activate yeast MAPK pathway.

SRPK2 Antibody (C-term) - References

Blume-Jensen P, et al. Nature 2001. 411: 355.
Cantrell D, J. Cell Sci. 2001. 114: 1439.
Jhiang S Oncogene 2000. 19: 5590.
Manning G, et al. Science 2002. 298: 1912.
Moller, D, et al. Am. J. Physiol. 1994. 266: C351-C359.
Robertson, S. et al. Trends Genet. 2000. 16: 368.
Robinson D, et al. Oncogene 2000. 19: 5548.
Van der Ven, P, et al. Hum. Molec. Genet. 1993. 2: 1889.
Vanhaesebroeck, B, et al. Biochem. J. 2000. 346: 561.
Van Weering D, et al. Recent Results Cancer Res. 1998. 154: 271.