

GLK Antibody (C-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP8005B

Specification

GLK Antibody (C-term) - Product Information

Application Primary Accession Reactivity	WB, IHC-P,E <u>08IVH8</u> Human
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	101316
Antigen Region	423-453

GLK Antibody (C-term) - Additional Information

Gene ID 8491

Other Names

Mitogen-activated protein kinase kinase kinase kinase 3, Germinal center kinase-related protein kinase, GLK, MAPK/ERK kinase kinase kinase 3, MEK kinase kinase 3, MEK kinase 3, MEKKK 3, MAP4K3, RAB8IPL1

Target/Specificity

This GLK antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 423-453 amino acids from the C-terminal region of human GLK.

Dilution WB~~1:1000 IHC-P~~1:50~100

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

GLK Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

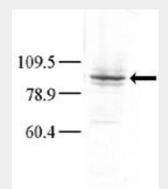
GLK Antibody (C-term) - Protein Information

Name MAP4K3

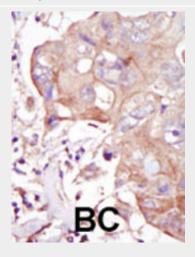
Synonyms RAB8IPL1

Function May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway.

Tissue Location


Ubiquitously expressed in all tissues examined, with high levels in heart, brain, placenta, skeletal muscle, kidney and pancreas and lower levels in lung and liver

GLK Antibody (C-term) - Protocols


Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

GLK Antibody (C-term) - Images

Western blot analysis of anti-GLK Pab (Cat. #AP8005b) in Hela cell lysate. Dilution for anti-GLK was 1:100; dilution for secondary goat anti-rabbit-HRP was 1:7000. A chemiluminescent kit was used for development of the Western blot. Data and protocol courtesy of Dr. Richard Lu, Partners HealthCare System at Harvard University.

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

GLK Antibody (C-term) - Background

GLK is a member of the Ste20 family of serine/threonine protein kinases. The protein belongs to the subfamily that consists of members, such as germinal center kinase (GCK), that are characterized by an N-terminal catalytic domain and C-terminal regulatory domain. The kinase activity of the encoded protein can be stimulated by UV radiation and tumor necrosis factor-alpha. The protein specifically activates the c-Jun N-terminal kinase (JNK) signaling pathway. Evidence suggests that it functions upstream of mitogen-activated protein kinase kinase kinase 1 (MEKK1). This gene previously was referred to as RAB8-interacting protein-like 1 (RAB8IPL1), but it has been renamed mitogen-activated protein kinase kinase kinase 3 (MAP4K3).

GLK Antibody (C-term) - References

Diener, K., et al., Proc. Natl. Acad. Sci. U.S.A. 94(18):9687-9692 (1997).