

HSD17B3 Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP9515c

Specification

HSD17B3 Antibody (Center) - Product Information

Application WB, IHC-P, FC,E

Primary Accession
Reactivity
Host
Clonality
Isotype
Calculated MW
Antigen Region
Reactivity
Human
Rabbit
Polyclonal
Rabbit IgG
34516
89-118

HSD17B3 Antibody (Center) - Additional Information

Gene ID 3293

Other Names

Testosterone 17-beta-dehydrogenase 3, 17-beta-hydroxysteroid dehydrogenase type 3, 17-beta-HSD 3, Testicular 17-beta-hydroxysteroid dehydrogenase, HSD17B3, EDH17B3

Target/Specificity

This HSD17B3 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 89-118 amino acids from the Central region of human HSD17B3.

Dilution

WB~~1:1000 IHC-P~~1:10~50 FC~~1:10~50

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

HSD17B3 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

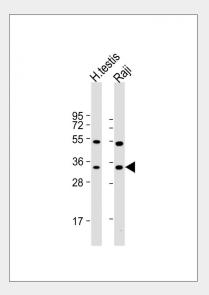
HSD17B3 Antibody (Center) - Protein Information

Name HSD17B3 (HGNC:5212)

Synonyms EDH17B3, SDR12C2

Function Catalyzes the conversion of 17-oxosteroids to 17beta- hydroxysteroids (PubMed:8075637, PubMed:16216911, PubMed:27927697, PubMed:26545797). Favors the reduction of androstenedione to testosterone (PubMed:16216911, PubMed:27927697, PubMed:26545797). Testosterone is the key androgen driving male development and function (PubMed:8075637). Uses NADPH while the two other EDH17B enzymes use NADH (PubMed:26545797, PubMed:8075637, PubMed:16216911). Androgens such as epiandrosterone, dehydroepiandrosterone, androsterone and androstanedione are accepted as substrates and reduced at C-17 (PubMed:16216911). Can reduce 11-ketoandrostenedione as well as 11beta-hydroxyandrostenedione at C-17 to the respective testosterone forms (PubMed:16216911, PubMed:27927697).

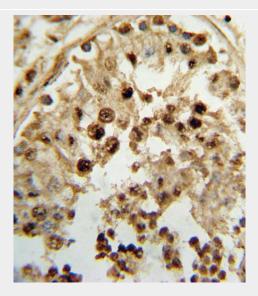
Cellular Location Endoplasmic reticulum

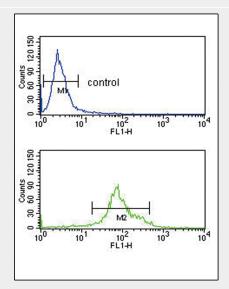

Tissue Location Testis..

HSD17B3 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.

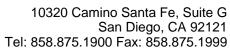
- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- Cell Culture


HSD17B3 Antibody (Center) - Images


All lanes: Anti-HSD17B3 Antibody (Center) at 1:1000 dilution Lane 1: human testis lysate Lane 2: Raji whole cell lysate Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size: 35 kDa Blocking/Dilution buffer:

5% NFDM/TBST.

Formalin-fixed and paraffin-embedded human testis tissue reacted with HSD17B3 Antibody (Center), which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated.


HSD17B3 Antibody (Center) (Cat. #AP9515c) flow cytometry analysis of K562 cells (bottom histogram) compared to a negative control cell (top histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

HSD17B3 Antibody (Center) - Background

This isoform of 17 beta-hydroxysteroid dehydrogenase is expressed predominantly in the testis and catalyzes the conversion of androstenedione to testosterone. It preferentially uses NADP as cofactor. Deficiency can result in male pseudohermaphroditism with gynecomastia.

HSD17B3 Antibody (Center) - References

Li, J., et al. Breast Cancer Res. 12 (2), R19 (2010): Sata, F., et al. J Sex Med (2010) In press: Ahn, J., et al. Hum. Mol. Genet. 18(19):3749-3757(2009) Chakrabarti, B., et al. Autism Res 2(3):157-177(2009)

Beuten, J., et al. Cancer Epidemiol. Biomarkers Prev. 18(6):1869-1880(2009) Andersson, S., et al. J. Clin. Endocrinol. Metab. 81(1):130-136(1996)