

### **DcR1 Antibody**

Catalog # ASC10112

### **Specification**

# **DcR1 Antibody - Product Information**

**Application Primary Accession** Other Accession Reactivity Host Clonality Isotype

AF012536, 2338421 Human, Mouse, Rat Rabbit **Polyclonal** laG Calculated MW 65 kDa KDa **Application Notes** 

DcR1 antibody can be used for detection of DcR1 by Western blot at 1 µg/mL. An approximate 65 kDa band can be detected.

Antibody can also be used for

immunoflourescence starting at 10 µg/mL. For immunofluorescence start at 20 µg/mL.

### **DcR1 Antibody - Additional Information**

Gene ID 8794

**Other Names** 

DcR1 Antibody: LIT, DCR1, TRID, CD263, TRAILR3, TRAIL-R3, DCR1-TNFR, LIT, UNQ321/PRO366, Tumor necrosis factor receptor superfamily member 10C, Decoy TRAIL receptor without death domain, DcR1, tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain

WB. IF

<u>014798</u>

**Target/Specificity** 

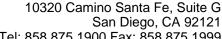
TNFRSF10C;

### **Reconstitution & Storage**

DcR1 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

#### **Precautions**

DcR1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.


## **DcR1 Antibody - Protein Information**


Name TNFRSF10C

Synonyms DCR1, LIT, TRAILR3, TRID

#### **Function**

Receptor for the cytotoxic ligand TRAIL. Lacks a cytoplasmic death domain and hence is not





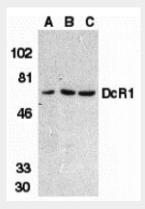


capable of inducing apoptosis. May protect cells against TRAIL mediated apoptosis by competing with TRAIL- R1 and R2 for binding to the ligand.

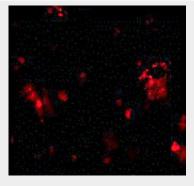
#### **Cellular Location**

Cell membrane; Lipid-anchor, GPI-anchor.

#### **Tissue Location**

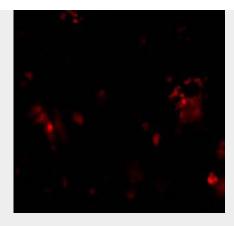

Higher expression in normal tissues than in tumor cell lines. Highly expressed in peripheral blood lymphocytes, spleen, skeletal muscle, placenta, lung and heart

# **DcR1 Antibody - Protocols**


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

## DcR1 Antibody - Images




Western blot analysis of DcR1 in HeLa cell (A), mouse (B) and rat (C) liver tissue lysates with DcR1 antibody at 1 µg/mL.



Immunofluorescence of DcR1 in rat liver tissue with DcR1 antibody at 10 µg/mL.





Immunofluorescence of DcR1 in Rat Liver cells with DcR1 antibody at 20 µg/mL.

## DcR1 Antibody - Background

DcR1 Antibody: Apoptosis is induced by certain cytokines including TNF and Fas ligand in the TNF family through their death domain containing receptors. TRAIL/Apo2L is a new member of the TNF family and induces apoptosis of a variety of tumor cell lines. DR4 and DR5 are the recently identified functional receptors for TRAIL. Two decoy receptors for TRAIL have been identified and designated DcR1/TRID/TRAIL-R3/LIT and DcR2/TRAIL-R4/TRUNDD. DcR1 has extracellular TRAIL-binding domain but lacks intracellular signaling domain. It is a glycophospholipid-anchored cell surface protein. DcR1 transcripts are expressed in many normal human tissues but not in most cancer cell lines. Overexpression of DcR1 did not induce apoptosis, but attenuated TRAIL-induced apoptosis.

## **DcR1 Antibody - References**

Pan G; O'Rourke K; Chinnaiyan et al.. The receptor for the cytotoxic ligand TRAIL. Science; 1997;276:111-113

Pan G, Ni J, Wei YF, et al. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997;277:815-8

Sheridan JP, Marsters SA, Pitti RM, et al. A. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277:818-21

Degli-Esposti MA, Smolak PJ, Walczak H, et al, Smith CA. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997;186(7):1165-70