

Nhe-1 Antibody

Catalog # ASC10605

Specification

Nhe-1 Antibody - Product Information

Application Primary Accession Other Accession Reactivity Host Clonality Isotype Application Notes WB, IHC, IF <u>P19634</u> <u>P19634</u>, <u>127809</u> Human, Mouse, Rat Rabbit Polyclonal IgG Nhe-1 antibody can be used for detection of Nhe-1 by Western blot at 1 - 2 μg/mL. Antibody can also be used for immunohistochemistry starting at 2.5 μg/mL. For immunofluorescence start at 20 μg/mL.

Nhe-1 Antibody - Additional Information

Gene ID Target/Specificity SLC9A1;

Reconstitution & Storage

Nhe-1 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

6548

Precautions

Nhe-1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Nhe-1 Antibody - Protein Information

Name SLC9A1 (HGNC:11071)

Function

Electroneutral Na(+) /H(+) antiporter that extrudes Na(+) in exchange for external protons driven by the inward sodium ion chemical gradient, protecting cells from acidification that occurs from metabolism (PubMed:7110335, PubMed:7603840, PubMed:11532004, PubMed:11350981, PubMed:11350981, PubMed:14680478, PubMed:14680478, PubMed:14680478, PubMed:17073455, PubMed:17073455, PubMed:<a href="http://www.uniprot.org/citations/17073455"

target="_blank">22020933, PubMed:27650500, PubMed:15677483, PubMed:32130622, PubMed:17493937). Exchanges intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry (By similarity). Plays a key role in maintening intracellular pH neutral and cell volume, and thus is important for cell growth, proliferation, migration and survival (PubMed:8901634, PubMed:15096511, PubMed:2020933, PubMed:2020933, PubMed:2020933, PubMed:2020933, PubMed:2020933, In addition, can transport lithium Li(+) and functions also as a Na(+)/Li(+) antiporter (PubMed:7603840). SLC9A1 also functions in membrane anchoring and organization of scaffolding complexes that coordinate signaling inputs (PubMed:15096511,

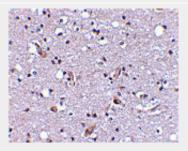
Cellular Location

Cell membrane; Multi-pass membrane protein. Basolateral cell membrane {ECO:0000250|UniProtKB:P48762}; Multi-pass membrane protein. Note=Localized basolaterally in every epithelial cell, except in the choroid plexus where SLC9A1 is expressed luminally.

Tissue Location Kidney and intestine.


Nhe-1 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.


- <u>Western Blot</u>
- <u>Blocking Peptides</u>
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Nhe-1 Antibody - Images

Western blot analysis of Nhe-1 in MOLT4 cell lysate with in with Nhe-1 antibody at (A) 1 and (B) 2 μ g/mL.

Immunohistochemical staining of human brain tissue using Nhe-1 antibody at 2.5 μ g/mL.

Immunofluorescence of Nhe-1 in Human Brain cells with Nhe-1 antibody at 20 µg/mL.

Nhe-1 Antibody - Background

Nhe-1 Antibody: The Na+/H+ antiporter (Nhe-1) is a ubiquitous membrane-bound enzyme involved in pH regulation of vertebrate cells and is specifically inhibited by the diuretic drug amiloride and activated by a variety of signals including growth factors, mitogens, neurotransmitters, and tumor promoters. Nhe-1 acts as an anchor for actin filaments to control the integrity of the cortical cytoskeleton. This occurs through a previously unrecognized structural link between Nhe-1 and the actin-binding proteins ezrin, radixin, and moesin, collectively referred to as ERM proteins. A structural role for Nhe-1 has been proposed in regulating the cortical cytoskeleton that is independent of its function as an ion exchanger. It is also thought that Nhe-1 play a role in

hypertension. At least two isoforms of Nhe-1 are known to exist.

Nhe-1 Antibody - References

Mendoza SA. The Na+-H+ antiport is a mediator of cell proliferation. Acta Paediatr. Scand.1987; 76:545-7.

Denker SP, Huang DC, Orlowski J, et al. Direct binding of the NA—H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol. Cell.2000; 6:1425-36.

Cingolani HE, Rebolledo OR, Portiansky EL, et al. Regression of hypertensive myocardial fibrosis by NA (+)/H(+) exchange inhibition. Hypertension2003; 41:373-7.