

EFCAB4B Antibody

Catalog # ASC11232

Specification

EFCAB4B Antibody - Product Information

Application Primary Accession Other Accession Reactivity Host Clonality Isotype Application Notes

WB, IHC, IF <u>O9BSW2</u> <u>NP_001138430</u>, <u>84766</u> Human, Mouse Rabbit Polyclonal IgG EFCAB4B antibody can be used for detection of EFCAB4B by Western blot at 1 μg/mL. Antibody can also be used for immunohistochemistry starting at 10 μg/mL. For immunofluorescence start at 20 μg/mL.

EFCAB4B Antibody - Additional Information

Gene ID

Target/Specificity

84766

EFCAB4B antibody was raised against a 14 amino acid synthetic peptide near the carboxy terminus of human EFCAB4B.

br>
terminus of human EFCAB4B.
br>br<t

Reconstitution & Storage

EFCAB4B antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

Precautions EFCAB4B Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

EFCAB4B Antibody - Protein Information

Name CRACR2A

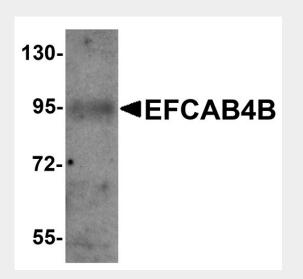
Synonyms EFCAB4B, RAB46 {ECO:0000303|PubMed:31092

Function

[Isoform 1]: Ca(2+)-binding protein that plays a key role in store-operated Ca(2+) entry (SOCE) in T-cells by regulating CRAC channel activation. Acts as a cytoplasmic calcium-sensor that facilitates the clustering of ORAI1 and STIM1 at the junctional regions between the plasma membrane and the endoplasmic reticulum upon low Ca(2+) concentration. It thereby regulates CRAC channel activation, including translocation and clustering of ORAI1 and STIM1. Upon increase of cytoplasmic Ca(2+) resulting from opening of CRAC channels, dissociates from ORAI1 and STIM1,

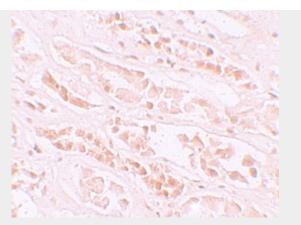
thereby destabilizing the ORAI1-STIM1 complex.

Cellular Location [Isoform 1]: Cytoplasm

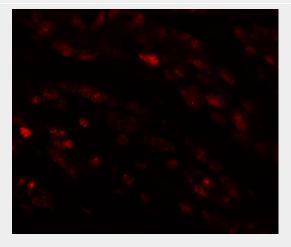

Tissue Location [Isoform 1]: Expressed in the Jurkat T-cell line.

EFCAB4B Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.


- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

EFCAB4B Antibody - Images



Western blot analysis of EFCAB4B in mouse kidney tissue lysate with EFCAB4B antibody at 1 μ g/mL.

Immunohistochemistry of EFCAB4B in human kidney tissue with EFCAB4B antibody at 10 µg/mL.

Immunofluorescence of EFCAB4B in human kidney tissue with EFCAB4B antibody at 20 µg/mL.

EFCAB4B Antibody - Background

EFCAB4B Antibody: EFCAB4B, also known as Calcium release-activated calcium channel regulator 2A, is a novel Ca2+-binding EF-hand protein that is thought to play a key role in store-operated Ca2+ entry in T-cells by regulating CRAC channel activation. EFCAB4B acts as a cytoplasmic calcium-sensor that forms a complex with ORAI1 and STIM1 at the junctional regions between the plasma membrane and the endoplasmic reticulum upon low Ca2+ concentration. A closely related protein, EFCAB4A, is likely to play a similar role as EFCAB4B, but the detailed function of EFCAB4A is still under investigation.

EFCAB4B Antibody - References

Srikanth S, Jung HJ, Kim KD, et al. A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat. Cell. Biol.2010; 12:436-46. Srikanth S, Jung HJ, Ribalet B, et al. The intracellular loop of Orai1 plays a central role in fast inactivation of Ca2+ release-activated Ca2+ channels. J. Biol. Chem.2010; 285:5066-75. Maruyama K, Mikawa T, and Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J. Biochem.1984; 95:511-9.