

PANX1 Antibody

Catalog # ASC11574

Specification

PANX1 Antibody - Product Information

Application
Primary Accession
Other Accession
Reactivity
Host
Clonality
Isotype

Calculated MW Application Notes **WB, IF** <u>Q96RD7</u>

NP_056183, 39995064 Human, Mouse, Rat

Rabbit Polyclonal

lgG

47 kDa KDa

PANX1 antibody can be used for detection of PANX1 by Western blot at 1 - 2 μ g/mL. For immunofluorescence start at 20 μ g/mL.

PANX1 Antibody - Additional Information

Gene ID **24145**

Target/Specificity

PANX1; Two transcript variants encoding different isoforms have been found for this gene.

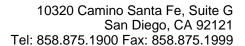
Reconstitution & Storage

PANX1 antibody can be stored at 4°C for three months and -20°C, stable for up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures.

Precautions

PANX1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

PANX1 Antibody - Protein Information


Name PANX1 (HGNC:8599)

Synonyms MRS1

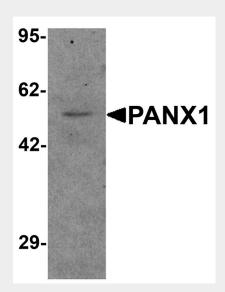
Function

Structural component of the gap junctions and the hemichannels involved in the ATP release and nucleotide permeation (PubMed:16908669, PubMed:20829356, PubMed:30918116). May play a role as a Ca(2+)-leak channel to regulate ER Ca(2+) homeostasis (PubMed:16908669). Plays a critical role in oogenesis (PubMed:30918116).

Cellular Location

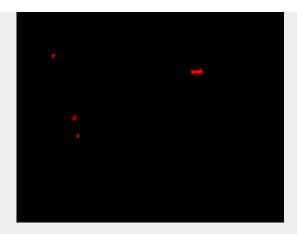
Cell membrane; Multi-pass membrane protein {ECO:0000255|PROSITE-ProRule:PRU00351} Cell junction, gap junction. Endoplasmic reticulum membrane; Multi-pass membrane protein {ECO:0000255|PROSITE- ProRule:PRU00351}

Tissue Location


Widely expressed (PubMed:30918116). Highest expression is observed in oocytes and brain (PubMed:30918116). Detected at very low levels in sperm cells (PubMed:30918116)

PANX1 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

PANX1 Antibody - Images

Western blot analysis of PANX1 in human ovary tissue lysate with PANX1 antibody at 1 µg/mL.

Immunofluorescence of PANX1 in human ovary tissue with PANX1 antibody at 20 μg/mL.

PANX1 Antibody - Background

PANX1 Antibody: The pannexin gene family encodes a second class of putative gap junction proteins and are highly conserved in invertebrates and mammals. Pannexins (Panx) are four-pass transmembrane proteins that oligomerize to form large pore ion and metabolite-permeable channels. Pannexin-1 (PANX1) and Pannexin-3 are closely related, while Pannexin-2 is a more distant relation. PANX1 is a transmembrane protein that forms a mechanosensitive ATP-permeable channel between adjacent cells and in the endoplasmic reticulum. PANX1 may play a role as a Ca2+ -leak channel to regulate ER Ca2+ homeostasis and regulates neural stem and progenitor cell proliferation.

PANX1 Antibody - References

Barbe MT, Monyer H and Bruzzone R. Cell-cell communication beyond connexins: the pannexin channels. Physiology 2006; 21:103-14.

Baranova A, Ivanov D, Petrash N, et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 2004; 83:706-16.

Sohl G, Maxeiner S and Willecke K. Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 2005: 6:191-200

Bao L, Locovei S and Dahl G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett. 2004; 572:65-8.