

TERF2 Antibody

Catalog # ASC11776

Specification

TERF2 Antibody - Product Information

Application WB, IHC Primary Accession 015554

Other Accession <u>NP_005643</u>, <u>429535832</u>

Reactivity
Host
Clonality
Polyclonal
Isotype
Human
Rabbit
Polyclonal

Calculated MW Predicted: 60 kDa

Observed: 69 kDa KDa

Application Notes TERF2 antibody can be used for detection of TERF2 by Western blot at 1 - 2 µg/ml.

Antibody can also be used for Immunohistochemistry at 5 $\mu g/mL$.

TERF2 Antibody - Additional Information

Gene ID **7014**

Target/Specificity

TERF2; TERF2 antibody is human specific.

Reconstitution & Storage

TERF2 antibody can be stored at 4°C for three months and -20°C, stable for up to one year.

Precautions

TERF2 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

TERF2 Antibody - Protein Information

Name TERF2

Synonyms TRBF2, TRF2

Function

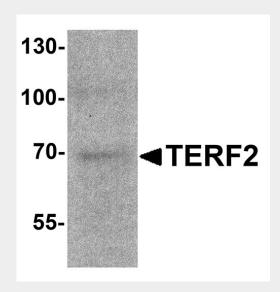
Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes. In addition to its telomeric DNA- binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo. Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded 5'- TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop)

formation by generating 3' single- stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair. Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo. Preferentially binds to positive supercoiled DNA. Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology. Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length.

Cellular Location

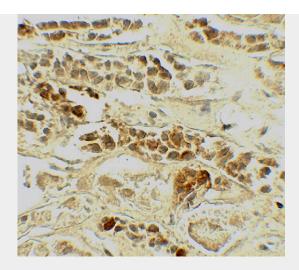
Nucleus {ECO:0000255|PROSITE-ProRule:PRU00625, ECO:0000269|PubMed:20655466}. Chromosome, telomere. Note=Colocalizes with telomeric DNA in interphase cells and is located at chromosome ends during metaphase

Tissue Location


Ubiquitous. Highly expressed in spleen, thymus, prostate, uterus, testis, small intestine, colon and peripheral blood leukocytes

TERF2 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- <u>Immunofluorescence</u>
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

TERF2 Antibody - Images

Western blot analysis of TERF2 in 293 cell lysate with TERF2 antibody at 1 µg/ml.

Immunohistochemistry of TERF2 in human kidney tissue with TERF2 antibody at 5 µg/mL.

TERF2 Antibody - Background

The telomeric repeat binding factor family (TERF1 and TERF2) plays a key role in cellular immortalization and cellular senescence (1). TERF2, as a component of the telomere nucleoprotein complex, is present at telomeres in metaphase of the cell cycle (2). TERF2 is a second negative regulator of telomere length and binds as a dimer to TTAGGG repeats at ends of chromosomes (telomeres), where it blocks inappropriate activation of the ATM/p53 pathway (2,3). TERF1 negatively regulates telomere elongation, while TERF2 protects the chromosome ends by inhibiting end-to-end fusions. Down-regulation of TRF expression in tumor cells may contribute to cell immortalization and malignant progression (4,5).

TERF2 Antibody - References

Broccoli D, Smogorzewska A, Chong L, et al. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 1997; 17:231-5.

Bilaud T, Brun C, Ancelin K, et al. Telomeric localization of TRF2, a novel human telobox protein. Nat. Genet. 1997; 17:236-9.

van Steensel B and Smogorzewska A. TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92:401-13.

Matsutani N, Yokozaki H, Tahara E, et al. Expression of TRF1 and 2 and TRF1-interacting nuclear protein 2 in human gastric carcinomas. Int. J. Oncol. 2001; 19:507-12.