

SLC39A9 Antibody (C-term) Blocking peptide

Synthetic peptide Catalog # BP13316b

Specification

SLC39A9 Antibody (C-term) Blocking peptide - Product Information

Primary Accession

Q9NUM3

SLC39A9 Antibody (C-term) Blocking peptide - Additional Information

Gene ID 55334

Other Names

Zinc transporter ZIP9, Solute carrier family 39 member 9, Zrt- and Irt-like protein 9, ZIP-9, SLC39A9, ZIP9

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP13316b was selected from the C-term region of SLC39A9. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

SLC39A9 Antibody (C-term) Blocking peptide - Protein Information

Name SLC39A9 (HGNC:20182)

Synonyms ZIP9

Function

Transports zinc ions across cell and organelle membranes into the cytoplasm and regulates intracellular zinc homeostasis (PubMed:25014355, PubMed:19420709, PubMed:28219737). Participates in the zinc ions efflux out of the secretory compartments (PubMed:19420709). Regulates intracellular zinc level, resulting in the enhancement of AKT1 and MAPK3/MAPK1 (Erk1/2) phosphorylation in response to the BCR activation (PubMed:23505453). Also functions as a membrane androgen receptor that mediates, through a G protein, the non-

Tel: 858.875.1900 Fax: 858.875.1999

classical androgen signaling pathway, characterized by the activation of MAPK3/MAPK1 (Erk1/2) and transcription factors CREB1 or ATF1 (By similarity). This pathway contributes to CLDN1 and CLDN5 expression and tight junction formation between adjacent Sertoli cells (By similarity). Mediates androgen-induced vascular endothelial cell proliferation through activation of an inhibitory G protein leading to the AKT1 and MAPK3/MAPK1 (Erk1/2) activation which in turn modulate inhibition (phosphorylation) of GSK3B and CCND1 transcription (PubMed: 34555425). Moreover, has dual functions as a membrane-bound androgen receptor and as an androgen-dependent zinc transporter both of which are mediated through an inhibitory G protein (Gi) that mediates both MAP kinase and zinc signaling leading to the androgen-dependent apoptotic process (PubMed: 25014355, PubMed:28219737).

Cellular Location

Golgi apparatus, trans-Golgi network membrane. Cell membrane; Multi-pass membrane protein. Cytoplasm, perinuclear region Mitochondrion. Nucleus

Tissue Location

Highly expressed in pancreas, testis, and pituitary and moderately in the kidney, liver, uterus, heart, prostate, and brain, whereas expression is lower in the ovary and colon

SLC39A9 Antibody (C-term) Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

SLC39A9 Antibody (C-term) Blocking peptide - Images

SLC39A9 Antibody (C-term) Blocking peptide - Background

SLC39A9 may act as a zinc-influx transporter (By similarity).

SLC39A9 Antibody (C-term) Blocking peptide - References

Matsuura, W., et al. Biosci. Biotechnol. Biochem. 73(5):1142-1148(2009)Wang, L., et al. Cancer Epidemiol. Biomarkers Prev. 17(12):3558-3566(2008)Lamesch, P., et al. Genomics 89(3):307-315(2007)