

USP13 Antibody (N-term) Blocking Peptide

Synthetic peptide Catalog # BP14518a

Specification

USP13 Antibody (N-term) Blocking Peptide - Product Information

Primary Accession Q92995
Other Accession NP 003931.2

USP13 Antibody (N-term) Blocking Peptide - Additional Information

Gene ID 8975

Other Names

Ubiquitin carboxyl-terminal hydrolase 13, Deubiquitinating enzyme 13, Isopeptidase T-3, ISOT-3, Ubiquitin thioesterase 13, Ubiquitin-specific-processing protease 13, USP13, ISOT3

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

USP13 Antibody (N-term) Blocking Peptide - Protein Information

Name USP13

Synonyms ISOT3

Function

Deubiquitinase that mediates deubiquitination of target proteins such as BECN1, MITF, SKP2 and USP10 and is involved in various processes such as autophagy, endoplasmic reticulum-associated degradation (ERAD), cell cycle progression or DNA damage response (PubMed:21571647, PubMed:32772043, PubMed:33592542). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes. Alternatively, forms with NEDD4 a deubiquitination complex, which subsequently stabilizes VPS34 to promote autophagy (PubMed:32101753, Also deubiquitinates USP10, an essential regulator of p53/TP53 stability. In turn, PIK3C3/VPS34-containing complexes regulate USP13 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13. Recruited by nuclear UFD1 and mediates deubiquitination of

SKP2, thereby regulating endoplasmic reticulum-associated degradation (ERAD). Also regulates ERAD through the deubiquitination of UBL4A a component of the BAG6/BAT3 complex. Mediates stabilization of SIAH2 independently of deubiquitinase activity: binds ubiquitinated SIAH2 and acts by impairing SIAH2 autoubiquitination. Regulates the cell cycle progression by stabilizing cell cycle proteins such as SKP2 and AURKB (PubMed:32772043). In addition, plays an important role in maintaining genomic stability and in DNA replication checkpoint activation via regulation of RAP80 and TOPBP1 (PubMed:33592542). Deubiquitinates the multifunctional protein HMGB1 and subsequently drives its nucleocytoplasmic localization and its secretion (PubMed:36585612" target="_blank">36585612). Positively regulates type I and type II interferon signalings by deubiquitinating STAT1 but negatively regulates antiviral response by deubiquitinating STING1 (PubMed:23940278/a>, PubMed:28534493/a>).

Cellular Location Cytoplasm.

Tissue LocationHighly expressed in ovary and testes.

USP13 Antibody (N-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

USP13 Antibody (N-term) Blocking Peptide - Images

USP13 Antibody (N-term) Blocking Peptide - References

Rose, J.E., et al. Mol. Med. 16 (7-8), 247-253 (2010) :Sowa, M.E., et al. Cell 138(2):389-403(2009)McElhinny, A.S., et al. J. Cell Biol. 157(1):125-136(2002)Timms, K.M., et al. Gene 217 (1-2), 101-106 (1998) :D'Andrea, A., et al. Crit. Rev. Biochem. Mol. Biol. 33(5):337-352(1998)