

Mouse Csnk1e Antibody (C-term) Blocking Peptide

Synthetic peptide Catalog # BP14708b

Specification

Mouse Csnk1e Antibody (C-term) Blocking Peptide - Product Information

Primary Accession

09IMK2

Mouse Csnk1e Antibody (C-term) Blocking Peptide - Additional Information

Gene ID 27373

Other Names

Casein kinase I isoform epsilon, CKI-epsilon, CKIe, Csnk1e

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

Mouse Csnk1e Antibody (C-term) Blocking Peptide - Protein Information

Name Csnkle

Function

Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates (By similarity). Participates in Wnt signaling (By similarity). Phosphorylates DVL1 (By similarity). Phosphorylates DVL2 (By similarity). Phosphorylates NEDD9/HEF1 (PubMed:29191835). Central component of the circadian clock (PubMed:18400165, PubMed:19414593, PubMed:21930935). In balance with PP1, determines the circadian period length, through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation (PubMed:<a

 $href="http://www.uniprot.org/citations/18400165" target="_blank">18400165, PubMed:19414593, PubMed:21930935). Controls PER1 and PER2 nuclear transport and degradation (PubMed:21930935).$

 $href="http://www.uniprot.org/citations/10848614" target="_blank">10848614, PubMed:14701732, PubMed:18400165, PubMed:19414593, PubMed:19414593, PubMed:<a$

href="http://www.uniprot.org/citations/21930935" target="_blank">21930935). Inhibits cytokine-induced granuloytic differentiation (By similarity).

Cellular Location Cytoplasm. Nucleus

Tissue Location

Expressed in all tissues examined, including brain, heart, lung, liver, pancreas, kidney, placenta and skeletal muscle Expressed in monocytes and lymphocytes but not in granulocytes

Mouse Csnk1e Antibody (C-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

Mouse Csnk1e Antibody (C-term) Blocking Peptide - Images

Mouse Csnk1e Antibody (C-term) Blocking Peptide - Background

Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. Can phosphorylate a large number of proteins. Participates in Wnt signaling. Phosphorylates DVL1. Central component of the circadian clock. May act as a negative regulator of circadian rhythmicity by phosphorylating PER1 and PER2. Retains PER1 in the cytoplasm. Inhibits cytokine-induced granuloytic differentiation.

Mouse Csnk1e Antibody (C-term) Blocking Peptide - References

Meng, Q.J., et al. Proc. Natl. Acad. Sci. U.S.A. 107(34):15240-15245(2010)Sugiyama, Y., et al. Biochem. J. 427(3):489-497(2010)Etchegaray, J.P., et al. PLoS ONE 5 (4), E10303 (2010) :Lee, H., et al. Proc. Natl. Acad. Sci. U.S.A. 106(50):21359-21364(2009)Isojima, Y., et al. Proc. Natl. Acad. Sci. U.S.A. 106(37):15744-15749(2009)