

CRYGB Antibody (Center) Blocking Peptide

Synthetic peptide Catalog # BP16201c

Specification

CRYGB Antibody (Center) Blocking Peptide - Product Information

Primary Accession

P07316

CRYGB Antibody (Center) Blocking Peptide - Additional Information

Gene ID 1419

Other Names

Gamma-crystallin B, Gamma-B-crystallin, Gamma-crystallin 1-2, CRYGB, CRYG2

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

CRYGB Antibody (Center) Blocking Peptide - Protein Information

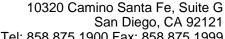
Name CRYGB

Synonyms CRYG2

Function

Crystallins are the dominant structural components of the vertebrate eye lens.

CRYGB Antibody (Center) Blocking Peptide - Protocols


Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

CRYGB Antibody (Center) Blocking Peptide - Images

CRYGB Antibody (Center) Blocking Peptide - Background

Crystallins are separated into two classes:taxon-specific, or enzyme, and ubiquitous. The latter classconstitutes the major proteins of vertebrate eye lens and maintainsthe transparency and refractive index of the lens. Since lenscentral fiber cells lose their nuclei during development,

these crystallins are made and then retained throughout life, making them extremely stable proteins. Mammalian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallinsare also considered as a superfamily. Alpha and beta families arefurther divided into acidic and basic groups. Seven protein regionsexist in crystallins: four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Gamma-crystallins are ahomogeneous group of highly symmetrical, monomeric proteinstypically lacking connecting peptides and terminal extensions. They are differentially regulated after early development. Fourgamma-crystallin genes (gamma-A through gamma-D) and threepseudogenes (gamma-E, gamma-F, gamma-G) are tandemly organized in agenomic segment as a gene cluster. Whether due to aging ormutations in specific genes, gamma-crystallins have been involved in cataract formation.

CRYGB Antibody (Center) Blocking Peptide - References

Acosta-Sampson, L., et al. J. Mol. Biol. 401(1):134-152(2010)Kapur, S., et al. Indian J Ophthalmol 57(3):197-201(2009)Choy, K.W., et al. Physiol. Genomics 25(1):9-15(2006)Hillier, L.W., et al. Nature 434(7034):724-731(2005)Salim, A., et al. Proteins 53(2):162-173(2003)