

NFKB(p105) Antibody (C-term S933) Blocking Peptide

Synthetic peptide Catalog # BP19121b

Specification

NFKB(p105) Antibody (C-term S933) Blocking Peptide - Product Information

Primary Accession

P19838

NFKB(p105) Antibody (C-term S933) Blocking Peptide - Additional Information

Gene ID 4790

Other Names

Nuclear factor NF-kappa-B p105 subunit, DNA-binding factor KBF1, EBP-1, Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, Nuclear factor NF-kappa-B p50 subunit, NFKB1

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

NFKB(p105) Antibody (C-term S933) Blocking Peptide - Protein Information

Name NFKB1

Function

NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain- containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, Ikappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a

transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105.

Cellular Location

[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm

NFKB(p105) Antibody (C-term S933) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

NFKB(p105) Antibody (C-term S933) Blocking Peptide - Images

NFKB(p105) Antibody (C-term S933) Blocking Peptide - Background

This gene encodes a 105 kD protein which can undergocotranslational processing by the 26S proteasome to produce a 50 kDprotein. The 105 kD protein is a Rel protein-specific transcriptioninhibitor and the 50 kD protein is a DNA binding subunit of theNF-kappa-B (NFKB) protein complex. NFKB is a transcriptionregulator that is activated by various intra- and extra-cellularstimuli such as cytokines, oxidant-free radicals, ultravioletirradiation, and bacterial or viral products. Activated NFKBtranslocates into the nucleus and stimulates the expression ofgenes involved in a wide variety of biological functions. Inappropriate activation of NFKB has been associated with a number of inflammatory diseases while persistent inhibition of NFKB leadsto inappropriate immune cell development or delayed cell growth. Two transcript variants encoding different isoforms have been foundfor this gene.

NFKB(p105) Antibody (C-term S933) Blocking Peptide - References

Beshir, A.B., et al. Cancer Lett. 299(2):137-149(2010)Song, C., et al. Virology 407(2):268-280(2010)Gonsalves, C., et al. J. Immunol. 185(10):6253-6264(2010)Kingeter, L.M., et al. J. Immunol. 185(8):4520-4524(2010)Clarke, D.L., et al. J. Biol. Chem. 285(38):29101-29110(2010)