

Mouse TSC1 (Center S555) Blocking peptide

Synthetic peptide Catalog # BP19568c

Specification

Mouse TSC1 (Center S555) Blocking peptide - Product Information

Primary Accession

09EP53

Mouse TSC1 (Center S555) Blocking peptide - Additional Information

Gene ID 64930

Other Names

Hamartin, Tuberous sclerosis 1 protein homolog, Tsc1, Kiaa0243

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

Mouse TSC1 (Center S555) Blocking peptide - Protein Information

Name Tsc1 {ECO:0000303|PubMed:11130985, ECO:0000312|MGI:MGI:1929183}

Function

Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed: 12820960). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12820960). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed: 12820960). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (By similarity). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (By similarity). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (PubMed: 16707451). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (By similarity). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed: 29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (By similarity). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (By similarity).

Cellular Location

Lysosome membrane {ECO:0000250|UniProtKB:Q92574}; Peripheral membrane protein {ECO:0000250|UniProtKB:Q92574}. Cytoplasm, cytosol {ECO:0000250|UniProtKB:Q92574}. Note=Recruited to lysosomal membranes in a RHEB-dependent process in absence of nutrients. In response to nutrients, the complex dissociates from lysosomal membranes and relocalizes to the cytosol. {ECO:0000250|UniProtKB:Q92574}

Mouse TSC1 (Center S555) Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

Mouse TSC1 (Center S555) Blocking peptide - Images

Mouse TSC1 (Center S555) Blocking peptide - Background

In complex with TSC2, inhibits the nutrient-mediated or growth factor-stimulated phosphorylation of S6K1 and EIF4EBP1 by negatively regulating mTORC1 signaling (By similarity). Implicated as a tumor suppressor. Involved in microtubule-mediated protein transport, but this seems to be due to unregulated mTOR signaling (By similarity).

Mouse TSC1 (Center S555) Blocking peptide - References

Kladney, R.D., et al. Cancer Res. 70(21):8937-8947(2010)Sathaliyawala, T., et al. Immunity 33(4):597-606(2010)Scott, C.L., et al. Am. J. Physiol. Lung Cell Mol. Physiol. 299 (4), L455-L471 (2010):Bartolome, A., et al. Endocrinology 151(7):3084-3094(2010)Squarize, C.H., et al. PLoS ONE 5 (5). E10643 (2010):