

SPRY3 Blocking Peptide (C-term)

Synthetic peptide Catalog # BP20296b

Specification

SPRY3 Blocking Peptide (C-term) - Product Information

Primary Accession

043610

SPRY3 Blocking Peptide (C-term) - Additional Information

Gene ID 10251

Other Names

Protein sprouty homolog 3, Spry-3, SPRY3

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

SPRY3 Blocking Peptide (C-term) - Protein Information

Name SPRY3 (HGNC:11271)

Function

Inhibits neurite branching, arbor length and neurite complexity (By similarity). Inhibits EGF-mediated p42/44 ERK signaling (By similarity). Negatively regulates the MAPK cascade, resulting in a reduction of extracellular matrix protein accumulation (PubMed:30878395). May function as an antagonist of fibroblast growth factor (FGF) pathways and may negatively modulate respiratory organogenesis (PubMed:9458049).

Cellular Location

Cytoplasm.

Tissue Location

Widely expressed; particularly in the fetal tissues. Expressed in the brain with expression the highest in Purkinje cells in the cerebellum (at protein level) (PubMed:26089202). Expressed in the myocardium of the heart (PubMed:30878395)

Tel: 858.875.1900 Fax: 858.875.1999

SPRY3 Blocking Peptide (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

SPRY3 Blocking Peptide (C-term) - Images

SPRY3 Blocking Peptide (C-term) - Background

May function as an antagonist of fibroblast growth factor (FGF) pathways and may negatively modulate respiratory organogenesis.