

SMARCC1 Blocking Peptide (C-term)

Synthetic peptide Catalog # BP21365b

Specification

SMARCC1 Blocking Peptide (C-term) - Product Information

Primary Accession

Q92922

SMARCC1 Blocking Peptide (C-term) - Additional Information

Gene ID 6599

Other Names

SWI/SNF complex subunit SMARCC1, BRG1-associated factor 155, BAF155, SWI/SNF complex 155 kDa subunit, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1, SMARCC1, BAF155

Target/Specificity

The synthetic peptide sequence is selected from aa 963-977 of HUMAN SMARCC1

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

SMARCC1 Blocking Peptide (C-term) - Protein Information

Name SMARCC1 (HGNC:11104)

Synonyms BAF155

Function

Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase activity of the catalytic subunit of the complex (PubMed:<a href-"http://www.upiprot.org/citations/10079207" target="http://www.upiprot.org/citations/10079207" target="http://www.upiprot.org/citations/100

href="http://www.uniprot.org/citations/10078207" target="_blank">10078207, PubMed:29374058). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from

proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity).

Cellular Location Nucleus. Cytoplasm

Tissue Location

Expressed in brain, heart, muscle, placenta, lung, liver, muscle, kidney and pancreas

SMARCC1 Blocking Peptide (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

SMARCC1 Blocking Peptide (C-term) - Images

SMARCC1 Blocking Peptide (C-term) - Background

Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). May stimulate the ATPase activity of the catalytic subunit of the complex. Also involved in vitamin D-coupled transcription regulation via its association with the WINAC complex, a chromatin-remodeling complex recruited by vitamin D receptor (VDR), which is required for the ligand-bound VDR- mediated transrepression of the CYP27B1 gene. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity).

SMARCC1 Blocking Peptide (C-term) - References

Wang W., et al. Genes Dev. 10:2117-2130(1996). Bienvenut W.V., et al. Submitted (JUL-2007) to UniProtKB. Sif S., et al. Genes Dev. 12:2842-2851(1998). Kitagawa H., et al. Cell 113:905-917(2003). Brill L.M., et al. Anal. Chem. 76:2763-2772(2004).