

### **AGER Blocking Peptide (Center)**

Synthetic peptide Catalog # BP21684c

### **Specification**

### **AGER Blocking Peptide (Center) - Product Information**

**Primary Accession** 

**Q15109** 

## AGER Blocking Peptide (Center) - Additional Information

Gene ID 177

#### **Other Names**

Advanced glycosylation end product-specific receptor, Receptor for advanced glycosylation end products, AGER, RAGE

### **Target/Specificity**

The synthetic peptide sequence is selected from aa 194-208 of HUMAN AGER

#### Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

#### Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

#### **Precautions**

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

### AGER Blocking Peptide (Center) - Protein Information

Name AGER

Synonyms RAGE

### **Function**

Cell surface pattern recognition receptor that senses endogenous stress signals with a broad ligand repertoire including advanced glycation end products, \$100 proteins, high-mobility group box 1 protein/HMGB1, amyloid beta/APP oligomers, nucleic acids, phospholipids and glycosaminoglycans (PubMed:<a href="http://www.uniprot.org/citations/27572515" target="\_blank">27572515</a>, PubMed:<a href="http://www.uniprot.org/citations/28515150" target="\_blank">28515150</a>, PubMed:<a href="http://www.uniprot.org/citations/34743181" target="\_blank">34743181</a><a>). Advanced glycosylation end products are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes (PubMed:<a href="http://www.uniprot.org/citations/21565706" target="\_blank">21565706</a>). These ligands accumulate at inflammatory sites during the pathogenesis of various diseases, including diabetes, vascular complications, neurodegenerative disorders, and cancers and RAGE transduces their binding into pro-inflammatory responses. Upon



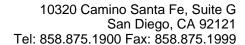
ligand binding, uses TIRAP and MYD88 as adapters to transduce the signal ultimately leading to the induction or inflammatory cytokines IL6, IL8 and TNFalpha through activation of NF-kappa-B (PubMed: <a href="http://www.uniprot.org/citations/21829704" target="blank">21829704</a>). Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key pro-inflammatory mediators (PubMed: <a href="http://www.uniprot.org/citations/19386136" target=" blank">19386136</a>). Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons (PubMed: <a href="http://www.uniprot.org/citations/19906677" target=" blank">19906677</a>). ABPP- initiated RAGE signaling, especially stimulation of p38 mitogen- activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space. Participates in endothelial albumin transcytosis together with HMGB1 through the RAGE/SRC/Caveolin-1 pathway, leading to endothelial hyperpermeability (PubMed:<a href="http://www.uniprot.org/citations/27572515" target=" blank">27572515</a>). Mediates the loading of HMGB1 in extracellular vesicles (EVs) that shuttle HMGB1 to hepatocytes by transferrin-mediated endocytosis and subsequently promote hepatocyte pyroptosis by activating the NLRP3 inflammasome (PubMed: <a href="http://www.uniprot.org/citations/34743181" target=" blank">34743181</a>). Promotes also extracellular hypomethylated DNA (CpG DNA) uptake by cells via the endosomal route to activate inflammatory responses (PubMed: <a href="http://www.uniprot.org/citations/24081950" target=" blank">24081950</a>, PubMed:<a href="http://www.uniprot.org/citations/28515150" target="blank">28515150</a>).

#### **Cellular Location**

[Isoform 1]: Cell membrane; Single-pass type I membrane protein [Isoform 10]: Cell membrane; Single-pass type I membrane protein

**Tissue Location** Endothelial cells.

### **AGER Blocking Peptide (Center) - Protocols**


Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

**AGER Blocking Peptide (Center) - Images** 

### AGER Blocking Peptide (Center) - Background

Mediates interactions of advanced glycosylation end products (AGE). These are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes. Acts as a mediator of both acute and chronic vascular inflammation in conditions such as atherosclerosis and in particular as a complication of diabetes. AGE/RAGE signaling plays an important role in regulating the production/expression of TNF- alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes. Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Receptor for amyloid beta peptide. Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons. ABPP-initiated RAGE signaling, especially stimulation of p38 mitogen-activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space. Can also bind oligonucleotides.





# **AGER Blocking Peptide (Center) - References**

Neeper M.,et al.J. Biol. Chem. 267:14998-15004(1992). Sugaya K.,et al.Genomics 23:408-419(1994). Abedin M.J.,et al.Submitted (JAN-2000) to the EMBL/GenBank/DDBJ databases. Malherbe P.,et al.Submitted (MAY-1999) to the EMBL/GenBank/DDBJ databases. Yonekura H.,et al.Biochem. J. 370:1097-1109(2003).