

PFDN6 Antibody (N-term) Blocking Peptide

Synthetic peptide Catalog # BP2836a

Specification

PFDN6 Antibody (N-term) Blocking Peptide - Product Information

Primary Accession

015212

PFDN6 Antibody (N-term) Blocking Peptide - Additional Information

Gene ID 10471

Other Names

Prefoldin subunit 6, Protein Ke2, PFDN6, HKE2, PFD6

Target/Specificity

The synthetic peptide sequence used to generate the antibody <a >AP2836a was selected from the N-term region of human PFDN6. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

PFDN6 Antibody (N-term) Blocking Peptide - Protein Information

Name PFDN6

Synonyms HKE2, PFD6

Function

Binds specifically to cytosolic chaperonin (c-CPN) and transfers target proteins to it. Binds to nascent polypeptide chain and promotes folding in an environment in which there are many competing pathways for nonnative proteins.

PFDN6 Antibody (N-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

PFDN6 Antibody (N-term) Blocking Peptide - Images PFDN6 Antibody (N-term) Blocking Peptide - Background

PFDN6 binds specifically to cytosolic chaperonin (c-CPN) and transfers target proteins to it. This protein also binds to nascent polypeptide chain and promotes folding in an environment in which there are many competing pathways for nonnative proteins.

PFDN6 Antibody (N-term) Blocking Peptide - References

Ostrov, D.A., Tissue Antigens 69 (2), 181-188 (2007) Simons, C.T., J. Biol. Chem. 279 (6), 4196-4203 (2004) Vainberg, I.E., Cell 93 (5), 863-873 (1998)