

Aurora-B (ARK/STK12) Antibody (N-term) Blocking peptide

Synthetic peptide Catalog # BP7001a

Specification

Aurora-B (ARK/STK12) Antibody (N-term) Blocking peptide - Product Information

Primary Accession

Q96GD4

Aurora-B (ARK/STK12) Antibody (N-term) Blocking peptide - Additional Information

Gene ID 9212

Other Names

Aurora kinase B, Aurora 1, Aurora- and IPL1-like midbody-associated protein 1, AIM-1, Aurora/IPL1-related kinase 2, ARK-2, Aurora-related kinase 2, STK-1, Serine/threonine-protein kinase 12, Serine/threonine-protein kinase 5, Serine/threonine-protein kinase aurora-B, AURKB, AIK2, AIM1, AIRK2, ARK2, STK1, STK12, STK5

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP7001a was selected from the N-term region of human Aurora-B . A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

Aurora-B (ARK/STK12) Antibody (N-term) Blocking peptide - Protein Information

Name AURKB

Function

Serine/threonine-protein kinase component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis (PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:29449677). The CPC

complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly

(PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:14722118, PubMed:26829474). Involved in the bipolar attachment of spindle microtubules to kinetochores and is a key regulator for the onset of cytokinesis during mitosis (PubMed:15249581). Required for central/midzone spindle assembly and cleavage furrow formation (PubMed: 12458200, PubMed:12686604). Key component of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage: phosphorylates CHMP4C, leading to retain abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis (PubMed:22422861, PubMed:24814515). AURKB phosphorylates the CPC complex subunits BIRC5/survivin, CDCA8/borealin and INCENP (PubMed:11516652, PubMed:12925766, PubMed: 14610074). Phosphorylation of INCENP leads to increased AURKB activity (PubMed: 11516652, PubMed:12925766, PubMed:14610074). Other known AURKB substrates involved in centromeric functions and mitosis are CENPA, DES/desmin, GPAF, KIF2C, NSUN2, RACGAP1, SEPTIN1, VIM/vimentin, HASPIN, and histone H3 (PubMed:11784863, PubMed:12689593, PubMed:14602875, PubMed:11856369, PubMed:16103226, PubMed:21658950, PubMed:11756469). A positive feedback loop involving HASPIN and AURKB contributes to localization of CPC to centromeres (PubMed:21658950). Phosphorylation of VIM controls vimentin filament segregation in cytokinetic process, whereas histone H3 is phosphorylated at 'Ser-10' and 'Ser-28' during mitosis (H3S10ph and H3S28ph, respectively) (PubMed:11784863, PubMed:11856369). AURKB is also required for kinetochore localization of BUB1 and SGO1 (PubMed:15020684. PubMed:17617734). Phosphorylation of p53/TP53 negatively regulates its transcriptional activity (PubMed: 20959462). Key regulator of active promoters in resting B- and T-lymphocytes: acts by mediating phosphorylation of H3S28ph at active promoters in resting B-cells, inhibiting RNF2/RING1B-mediated ubiquitination of histone H2A and enhancing binding and activity of the USP16 deubiquitinase at transcribed genes (By similarity). Acts as an inhibitor of CGAS during mitosis: catalyzes phosphorylation of the N-terminus of CGAS during the G2-M transition, blocking CGAS liquid phase separation and activation, and thereby preventing CGAS-induced autoimmunity (PubMed: 33542149). Phosphorylates KRT5 during anaphase and telophase (By similarity).

Cellular Location

Nucleus. Chromosome. Chromosome, centromere. Chromosome, centromere, kinetochore.

Tel: 858.875.1900 Fax: 858.875.1999

Cytoplasm, cytoskeleton, spindle. Midbody. Note=Localizes on chromosome arms and inner centromeres from prophase through metaphase and then transferring to the spindle midzone and midbody from anaphase through cytokinesis (PubMed:20929775). Colocalized with gamma tubulin in the midbody (PubMed:17726514). Proper localization of the active, Thr-232- phosphorylated form during metaphase may be dependent upon interaction with SPDYC (PubMed:20605920). Colocalized with SIRT2 during cytokinesis with the midbody (PubMed:17726514). Localization (and probably targeting of the CPC) to the inner centromere occurs predominantly in regions with overlapping mitosis-specific histone phosphorylations H3pT3 and H2ApT12 (PubMed:20929775).

Tissue Location

High level expression seen in the thymus. It is also expressed in the spleen, lung, testis, colon, placenta and fetal liver. Expressed during S and G2/M phase and expression is up-regulated in cancer cells during M phase.

Aurora-B (ARK/STK12) Antibody (N-term) Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

Aurora-B (ARK/STK12) Antibody (N-term) Blocking peptide - Images

Aurora-B (ARK/STK12) Antibody (N-term) Blocking peptide - Background

Chromosomal segregation during mitosis as well as meiosis is regulated by kinases and phosphatases. The Aurora kinases associate with microtubules during chromosome movement and segregation. Aurora kinase B localizes to microtubules near kinetochores, specifically to the specialized microtubules called K-fibers, and Aurora kinase A localizes to centrosomes.

Aurora-B (ARK/STK12) Antibody (N-term) Blocking peptide - References

Kimura, M., et al., Biochem. Biophys. Res. Commun. 316(3):930-936 (2004). Yasui, Y., et al., J. Biol. Chem. 279(13):12997-13003 (2004).Lampson, M.A., et al., Nat. Cell Biol. 6(3):232-237 (2004).Wheatley, S.P., et al., J. Biol. Chem. 279(7):5655-5660 (2004).Honda, R., et al., Mol. Biol. Cell 14(8):3325-3341 (2003).