

# AMPK gamma (PRKAG1) Antibody (Center) Blocking peptide

Synthetic peptide Catalog # BP7048c

## **Specification**

# AMPK gamma (PRKAG1) Antibody (Center) Blocking peptide - Product Information

Primary Accession P54619
Other Accession NP 997626

# AMPK gamma (PRKAG1) Antibody (Center) Blocking peptide - Additional Information

### **Gene ID 5571**

#### **Other Names**

5'-AMP-activated protein kinase subunit gamma-1, AMPK gamma-1, AMPK subunit gamma-1, AMPKg, PRKAG1

## Target/Specificity

The synthetic peptide sequence used to generate the antibody <a href=/product/products/AP7048c>AP7048c</a> was selected from the Center region of human PRKAG1 . A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

#### **Format**

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

#### Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

## **Precautions**

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

# AMPK gamma (PRKAG1) Antibody (Center) Blocking peptide - Protein Information

## Name PRKAG1

### **Function**

AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:<a href="http://www.uniprot.org/citations/21680840" target="\_blank">21680840</a>, PubMed:<a href="http://www.uniprot.org/citations/24563466" target="\_blank">24563466</a>). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:<a href="http://www.uniprot.org/citations/21680840" target="\_blank">21680840</a>, PubMed:<a href="http://www.uniprot.org/citations/24563466" target="\_blank">24563466</a>). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:<a



href="http://www.uniprot.org/citations/21680840" target=" blank">21680840</a>, PubMed:<a href="http://www.uniprot.org/citations/24563466" target="blank">24563466</a>). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:<a href="http://www.uniprot.org/citations/21680840" target=" blank">21680840</a>, PubMed:<a href="http://www.uniprot.org/citations/24563466" target=" blank">24563466</a>). Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK; AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits (PubMed:<a href="http://www.uniprot.org/citations/24563466" target="blank">24563466</a>). ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit (PubMed:<a href="http://www.uniprot.org/citations/21680840" target=" blank">21680840</a>, PubMed:<a href="http://www.uniprot.org/citations/24563466" target=" blank">24563466</a>). ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive (PubMed:<a href="http://www.uniprot.org/citations/21680840" target="\_blank">21680840</a>, PubMed:<a href="http://www.uniprot.org/citations/24563466" target="\_blank">24563466</a>).

# AMPK gamma (PRKAG1) Antibody (Center) Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

## • Blocking Peptides

AMPK gamma (PRKAG1) Antibody (Center) Blocking peptide - Images

AMPK gamma (PRKAG1) Antibody (Center) Blocking peptide - Background

PRKAG1 is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit is one of the gamma regulatory subunits of AMPK.

# AMPK gamma (PRKAG1) Antibody (Center) Blocking peptide - References

Minokoshi, Y., et al., Nature 428(6982):569-574 (2004). Hamilton, S.R., et al., FEBS Lett. 500(3):163-168 (2001). Zidovetzki, R., et al., AIDS Res. Hum. Retroviruses 14(10):825-833 (1998). Reinton, N., et al., Genomics 49(2):290-297 (1998). Stapleton, D., et al., FEBS Lett. 409(3):452-456 (1997).