

DTYMK Antibody (C-term) Blocking Peptide

Synthetic peptide Catalog # BP7060b

Specification

DTYMK Antibody (C-term) Blocking Peptide - Product Information

Primary Accession

P23919

DTYMK Antibody (C-term) Blocking Peptide - Additional Information

Gene ID 1841

Other Names

Thymidylate kinase, dTMP kinase, DTYMK, CDC8, TMPK, TYMK

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP7060b was selected from the C-term region of human DTYMK. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

DTYMK Antibody (C-term) Blocking Peptide - Protein Information

Name DTYMK

Synonyms CDC8, TMPK, TYMK

Function

Catalyzes the phosphorylation of thymidine monophosphate (dTMP) to thymidine diphosphate (dTDP), the immediate precursor for the DNA building block dTTP, with ATP as the preferred phosphoryl donor in the presence of Mg(2+).

DTYMK Antibody (C-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

DTYMK Antibody (C-term) Blocking Peptide - Images

DTYMK Antibody (C-term) Blocking Peptide - Background

Thymidylate kinase (DTYMK) catalyzes the phosphorylation of dTMP to form dTDP in the dTTP synthesis pathway for DNA synthesis. DTYMK is essential for DNA synthesis and is an important intermediate enzyme in the pathway of many pyrimidine analog drugs, including 5-Fluorouracil (5-FU), the chemotherapeutic drug of choice for several solid tumors. The human DTYMK gene was isolated via functional complementation of a Saccharomyces cerevisiae cell cycle mutant, cdc8. DTYMK mRNA levels and enzyme activities are regulated at the level of cell cycle and cell growth pathways.