

MOK Antibody (C-term) Blocking Peptide

Synthetic peptide Catalog # BP7543b

Specification

MOK Antibody (C-term) Blocking Peptide - Product Information

Primary Accession

Q9UQ07

MOK Antibody (C-term) Blocking Peptide - Additional Information

Gene ID 5891

Other Names

MAPK/MAK/MRK overlapping kinase, MOK protein kinase, Renal tumor antigen 1, RAGE-1, MOK, RAGE, RAGE1

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP7543b was selected from the C-term region of human MOK . A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

MOK Antibody (C-term) Blocking Peptide - Protein Information

Name MOK

Synonyms RAGE, RAGE1

Function

Able to phosphorylate several exogenous substrates and to undergo autophosphorylation. Negatively regulates cilium length in a cAMP and mTORC1 signaling-dependent manner.

Cellular Location

Cytoplasm {ECO:0000250|UniProtKB:Q9WVS4}. Cell projection, cilium {ECO:0000250|UniProtKB:Q9WVS4}. Nucleus {ECO:0000250|UniProtKB:Q9WVS4}

Tissue Location

Expressed in heart, brain, lung, kidney, and pancreas, and at very low levels in placenta, liver and

skeletal muscle. Detected in retina

MOK Antibody (C-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

MOK Antibody (C-term) Blocking Peptide - Images

MOK Antibody (C-term) Blocking Peptide - Background

Protein kinases are enzymes that transfer a phosphate group from a phosphate donor, generally the g phosphate of ATP, onto an acceptor amino acid in a substrate protein. By this basic mechanism, protein kinases mediate most of the signal transduction in eukaryotic cells, regulating cellular metabolism, transcription, cell cycle progression, cytoskeletal rearrangement and cell movement, apoptosis, and differentiation. With more than 500 gene products, the protein kinase family is one of the largest families of proteins in eukaryotes. The family has been classified in 8 major groups based on sequence comparison of their tyrosine (PTK) or serine/threonine (STK) kinase catalytic domains. The STE group (homologs of yeast Sterile 7, 11, 20 kinases) consists of 50 kinases related to the mitogen-activated protein kinase (MAPK) cascade families (Ste7/MAP2K, Ste11/MAP3K, and Ste20/MAP4K). MAP kinase cascades, consisting of a MAPK and one or more upstream regulatory kinases (MAPKKs) have been best characterized in the yeast pheromone response pathway. Pheromones bind to Ste cell surface receptors and activate yeast MAPK pathway.

MOK Antibody (C-term) Blocking Peptide - References

Miyata, Y., et al., Genes Cells 4(5):299-309 (1999). Gaugler, B., et al., Immunogenetics 44(5):323-330 (1996).