

EphA4 Antibody Blocking Peptide

Synthetic peptide Catalog # BP7609d

Specification

EphA4 Antibody Blocking Peptide - Product Information

Primary Accession

P54764

EphA4 Antibody Blocking Peptide - Additional Information

Gene ID 2043

Other Names

Ephrin type-A receptor 4, EPH-like kinase 8, EK8, hEK8, Tyrosine-protein kinase TYRO1, Tyrosine-protein kinase receptor SEK, EPHA4, HEK8, SEK, TYRO1

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP7609d was selected from the region of human EphA4. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

EphA4 Antibody Blocking Peptide - Protein Information

Name EPHA4

Synonyms HEK8, SEK, TYRO1

Function

Receptor tyrosine kinase which binds membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous, it has the unique property among Eph receptors to bind and to be physiologically activated by both GPI- anchored ephrin-A and transmembrane ephrin-B ligands including EFNA1 and EFNB3. Upon activation by ephrin ligands, modulates cell morphology and integrin-dependent cell adhesion through regulation of the Rac, Rap and Rho GTPases activity. Plays an important role in the development of the nervous system controlling different steps of axonal guidance including

the establishment of the corticospinal projections. May also control the segregation of motor and sensory axons during neuromuscular circuit development. In addition to its role in axonal guidance plays a role in synaptic plasticity. Activated by EFNA1 phosphorylates CDK5 at 'Tyr-15' which in turn phosphorylates NGEF regulating RHOA and dendritic spine morphogenesis. In the nervous system, also plays a role in repair after injury preventing axonal regeneration and in angiogenesis playing a role in central nervous system vascular formation. Additionally, its promiscuity makes it available to participate in a variety of cell-cell signaling regulating for instance the development of the thymic epithelium. During development of the cochlear organ of Corti, regulates pillar cell separation by forming a ternary complex with ADAM10 and CADH1 which facilitates the cleavage of CADH1 by ADAM10 and disruption of adherens junctions (By similarity). Phosphorylates CAPRIN1, promoting CAPRIN1-dependent formation of a membraneless compartment (By similarity).

Cellular Location

Cell membrane {ECO:0000250|UniProtKB:Q03137}; Single-pass type I membrane protein {ECO:0000250|UniProtKB:Q03137} Cell projection, axon {ECO:0000250|UniProtKB:Q03137}. Cell projection, dendrite {ECO:0000250|UniProtKB:Q03137}. Postsynaptic density membrane {ECO:0000250|UniProtKB:Q03137}. Early endosome {ECO:0000250|UniProtKB:Q03137}. Cell junction, adherens junction {ECO:0000250|UniProtKB:Q03137}. Note=Clustered upon activation and targeted to early endosome. {ECO:0000250|UniProtKB:Q03137}

Tissue Location Ubiquitous..

EphA4 Antibody Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

EphA4 Antibody Blocking Peptide - Images

EphA4 Antibody Blocking Peptide - Background

Protein kinases are enzymes that transfer a phosphate group from a phosphate donor, generally the g phosphate of ATP, onto an acceptor amino acid in a substrate protein. By this basic mechanism, protein kinases mediate most of the signal transduction in eukaryotic cells, regulating cellular metabolism, transcription, cell cycle progression, cytoskeletal rearrangement and cell movement, apoptosis, and differentiation. With more than 500 gene products, the protein kinase family is one of the largest families of proteins in eukaryotes. The family has been classified in 8 major groups based on sequence comparison of their tyrosine (PTK) or serine/threonine (STK) kinase catalytic domains. The tyrosine kinase (TK) group is mainly involved in the regulation of cell-cell interactions such as differentiation, adhesion, motility and death. There are currently about 90 TK genes sequenced, 58 are of receptor protein TK (e.g. EGFR, EPH, FGFR, PDGFR, TRK, and VEGFR families), and 32 of cytosolic TK (e.g. ABL, FAK, JAK, and SRC families).

EphA4 Antibody Blocking Peptide - References

Prevost, N., et al., Proc. Natl. Acad. Sci. U.S.A. 99(14):9219-9224 (2002).Xu, Q., et al., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355(1399):993-1002 (2000).Holder, N., et al., Development 126(10):2033-2044 (1999).Zhou, R., Pharmacol. Ther. 77(3):151-181 (1998).Fox, G.M., et al., Oncogene 10(5):897-905 (1995).