

## EGFR Antibody (Y869) Blocking Peptide

Synthetic peptide Catalog # BP7628h

### **Specification**

## EGFR Antibody (Y869) Blocking Peptide - Product Information

**Primary Accession** 

P00533

# EGFR Antibody (Y869) Blocking Peptide - Additional Information

**Gene ID 1956** 

#### **Other Names**

Epidermal growth factor receptor, Proto-oncogene c-ErbB-1, Receptor tyrosine-protein kinase erbB-1, EGFR, ERBB, ERBB1, HER1

# **Target/Specificity**

The synthetic peptide sequence used to generate the antibody <a href=/product/products/AP7628h>AP7628h</a> was selected from the Y869 region of human EGFR. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

### **Format**

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

#### Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

#### **Precautions**

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

### EGFR Antibody (Y869) Blocking Peptide - Protein Information

Name EGFR (HGNC:3236)

Synonyms ERBB, ERBB1, HER1

### **Function**

Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:<a href="http://www.uniprot.org/citations/2790960" target="\_blank">2790960</a>, PubMed:<a href="http://www.uniprot.org/citations/10805725" target="\_blank">10805725</a>, PubMed:<a href="http://www.uniprot.org/citations/27153536" target="\_blank">27153536</a>). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin- binding EGF (PubMed:<a href="http://www.uniprot.org/citations/2790960" target="\_blank">2790960</a>, PubMed:<a href="http://www.uniprot.org/citations/7679104" target=" blank">7679104</a>, PubMed:<a href="http://www.uniprot.org/citations/8144591"



target=" blank">8144591</a>, PubMed:<a href="http://www.uniprot.org/citations/9419975" target="blank">9419975</a>, PubMed:<a href="http://www.uniprot.org/citations/15611079" target="blank">15611079</a>, PubMed:<a href="http://www.uniprot.org/citations/12297049" target="\_blank">12297049</a>, PubMed:<a href="http://www.uniprot.org/citations/27153536" target=" blank">27153536</a>, PubMed:<a href="http://www.uniprot.org/citations/20837704" target=" blank">20837704</a>, PubMed:<a href="http://www.uniprot.org/citations/17909029" target=" blank">17909029</a>). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed: <a href="http://www.uniprot.org/citations/27153536" target=" blank">27153536</a>). May also activate the NF-kappa-B signaling cascade (PubMed:<a href="http://www.uniprot.org/citations/11116146" target=" blank">11116146</a>). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed: <a href="http://www.uniprot.org/citations/11602604" target=" blank">11602604</a>). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:<a href="http://www.uniprot.org/citations/11483589" target=" blank">11483589</a>). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:<a href="http://www.uniprot.org/citations/20462955" target=" blank">20462955</a>). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity).

#### **Cellular Location**

Cell membrane; Single-pass type I membrane protein. Endoplasmic reticulum membrane; Single-pass type I membrane protein. Golgi apparatus membrane; Single-pass type I membrane protein. Nucleus membrane; Single-pass type I membrane protein Endosome Endosome membrane. Nucleus. Note=In response to EGF, translocated from the cell membrane to the nucleus via Golgi and ER (PubMed:20674546, PubMed:17909029). Endocytosed upon activation by ligand (PubMed:2790960, PubMed:17182860, PubMed:27153536, PubMed:17909029). Colocalized with GPER1 in the nucleus of estrogen agonist-induced cancer-associated fibroblasts (CAF) (PubMed:20551055)

## **Tissue Location**

Ubiquitously expressed. Isoform 2 is also expressed in ovarian cancers.

### EGFR Antibody (Y869) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

#### Blocking Peptides

EGFR Antibody (Y869) Blocking Peptide - Images

# EGFR Antibody (Y869) Blocking Peptide - Background

EGFR is a transmembrane glycoprotein that is a member of a family of protein tyrosine kinases crucial in maintaining a normal balance in cell growth and development. A prototype member of the type 1 receptor tyrosine kinases, EGFR is encoded by the cellular oncogene cerbB1. EGFR has an extracellular ligand binding domain, a single transmembrane region, and cytoplasmic domain which is composed of a tyrosine kinase domain and a carboxy terminal domain. The carboxy terminal domain contains at least four tyrosine autophosphorylation sites. Increased production or activation of EGFR has been associated with poor prognosis in a variety of tumors. EGFR overexpression is observed in tumors of the head and neck, brain, bladder, stomach, breast, lung, endometrium,



cervix, vulva, ovary, esophagus, stomach and in squamous cell carcinoma.

# EGFR Antibody (Y869) Blocking Peptide - References

Aifa, S., et al., Exp. Cell Res. 302(1):108-114 (2005).Adams, T.E., et al., Growth Factors 22(2):89-95 (2004).Ichinose, J., et al., Biochem. Biophys. Res. Commun. 324(3):1143-1149 (2004).Kuribayashi, A., et al., Endocrinology 145(11):4976-4984 (2004).Kapoor, G.S., et al., Mol. Cell. Biol. 24(2):823-836 (2004).