

WNK1 Antibody (Center) Blocking Peptide

Synthetic peptide Catalog # BP8107c

Specification

WNK1 Antibody (Center) Blocking Peptide - Product Information

Primary Accession Other Accession O4VBX9

WNK1 Antibody (Center) Blocking Peptide - Additional Information

Gene ID 65125

Other Names

Serine/threonine-protein kinase WNK1, Erythrocyte 65 kDa protein, p65, Kinase deficient protein, Protein kinase lysine-deficient 1, Protein kinase with no lysine 1, hWNK1, WNK1, HSN2, KDP, KIAA0344, PRKWNK1

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP8107c was selected from the Center region of human WNK1 . A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

WNK1 Antibody (Center) Blocking Peptide - Protein Information

Name WNK1 {ECO:0000303|PubMed:11571656, ECO:0000312|HGNC:HGNC:14540}

Function

Serine/threonine-protein kinase component of the WNK1- SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a

membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed: 15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1- SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed: 29196535). Acts as a negative regulator of autophagy (PubMed: 27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed: 10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed: 36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed: 33964204).

Cellular Location

Cytoplasm. Nucleus. Cytoplasm, cytoskeleton, spindle. Note=Mediates formation and localizes to cytoplasmic membraneless compartment in response to hyperosmotic stress (PubMed:36318922). Also localizes to the nucleus (PubMed:29196535) Localizes to the mitotic spindle during mitosis (PubMed:21220314)

Tissue Location

Widely expressed, with highest levels observed in the testis, heart, kidney and skeletal muscle [Isoform 3]: This isoform is kidney-specific and specifically expressed in the distal convoluted tubule (DCT) and connecting tubule (CNT) of the nephron.

WNK1 Antibody (Center) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

WNK1 Antibody (Center) Blocking Peptide - Images

WNK1 Antibody (Center) Blocking Peptide - Background

The WNK1 gene encodes a cytoplasmic serine-threonine kinase expressed in distal nephron.[supplied by OMIM]

WNK1 Antibody (Center) Blocking Peptide - References

Xu, B.E., et al., J. Biol. Chem. 277(50):48456-48462 (2002). Verissimo, F., et al., Oncogene 20(39):5562-5569 (2001). Wilson, F.H., et al., Science 293(5532):1107-1112 (2001). Moore, T.M., et al., J. Biol. Chem. 275(6):4311-4322 (2000).